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Wavy cracks in drying colloidal films
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Fracture mechanics successfully predicts when cracks will grow. Describing the path that cracks
follow, however, has remained difficult. The study of crack paths has recently focused on a single
experimental system, that of thermally quenched glass, where straight, wavy, helical, and branched
cracks appear under different conditions. Several models of crack path prediction have been devel-
oped but none is generally accepted. Here we show that slowly oscillating wavy cracks can form
during the drying of a colloidal dispersion. These drying films are subject to large stress gradients
perpendicular to the mean direction of crack growth. Under these conditions existing models do not
predict periodic paths. We show, instead, how to model crack paths by allowing a growing crack
to curve towards the direction of maximum energy release rate. Not only does this explain wavy
cracks in drying films, and correctly describe the wavelength dependence of our experiments, but it
is generally applicable to predicting crack paths in spatially varying stress fields.

Prediction of the conditions under which a crack can
grow, in a stressed body, are given by the fracture me-
chanics developed by Griffith and Irwin [1]. It follows
from these theories that a crack in an isotropic medium
should also tend to grow in the direction of some max-
imum strain energy release rate. However, the related
‘principle of local symmetry’ has instead been most fre-
quently invoked to predict how cracks grow [2]. This
requires cracks to follow paths along which the shear
stress in the immediate vicinity of the crack tip is always
zero. This principle has been developed alongside exper-
iments on quenched glass, where straight, wavy, helical,
and branched cracks appear under different conditions[3–
8]. Recently, however, these experiments have found that
local symmetry is violated [8]. Here we show that drying
colloidal dispersions can also display wavy cracks. We
find that local symmetry does not predict periodic crack
paths in drying films, but that a model, based on a crack
seeking to maximise its energy release rate, does. This
work touches on the fundamental question of the path
taken by a growing crack, and suggests how to construct
a general crack path model.

Films, of either colloidal latex (prepared as described
elsewhere[9]) or silica (Ludox TM-40, HSA, or FM), were
spread onto level glass slides, and allowed to dry by evap-
oration from the exposed upper surface. The films dried
directionally, solidifying, and cracking, from the edges
inward[10], as outlined in Fig. 1(a), with final film thick-
nesses of order 10 µm. In addition to the expected array
of parallel straight cracks[10, 11], cracks were also seen
to advance along wavy, or oscillatory, paths. The tips
of the straight cracks lay near a common fracture front,
and, as shown in Fig. 1(a), small displacements away
from this line do not appear to affect the crack pattern.

Wavy cracks, however, always lagged well behind their
neighbours, typically by many times the average crack
spacing, such that each wavy crack was bounded by two
pre-existing, parallel cracks, as shown in Fig. 1(b). The
crack paths were observed in dry films with a digital mi-
croscope, and the displacements of wavy cracks from the
centreline were extracted, as shown in Fig. 2. A single
wavelength could be identified for each wavy crack, with
no harmonics.

Although wavy cracks in drying dispersions appear
similar to the wavy cracks known from thermal quench-
ing experiments on glass plates[3–8], the boundary con-
ditions of the two cases are different. For a quenched
plate all surfaces are free, whereas a drying film is nor-
mally fixed to a rigid substrate. Assuming no displace-
ment on this interface, the thickness-averaged stress re-
lieved by the presence of two parallel cracks at y =
±b, in an elastic film, as shown in Fig. 3, is σc =
σ0 cosh(yc/h)/ cosh(bc/h) where h is the film height, σ0
is the local in-plane pre-crack stress, and c = 0.9 is a
dimensionless decay length originating in the substrate
constraint[12]. The in-plane stresses between the two
cracks, prior to the appearance of the wavy crack, are
therefore σyy = σ0 − σc, and σxx = σ0 − νσc, where
ν is Poisson’s ratio of the film. This variation in stress,
from the centreline to the bounding cracks, can guide the
growth of the wavy crack.

The stresses in a drying film are a response to capil-
lary forces. The magnitude of the capillary pressure in
the film increases from zero, at the solidification front, to
a maximum value at the pore-opening front[10]. These
fronts are separated by tens of crack spacings, as demon-
strated in Fig. 1(a), and the resulting stress gradients are
correspondingly gentler than those generated by a wavy
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FIG. 1: Wavy cracks in drying colloidal dispersions. (a) Dur-
ing directional drying, a film solidifies from its edges, inwards.
A series of co-parallel drying fronts form, and typically ad-
vance at speeds of order 1 µm/s. Initially (1) the dispersion
solidifies into a rigid particle raft, although the pore spaces
between particles remain filled with fluid. Capillary forces
build up in the rigid film, as it wicks liquid to replace that
lost to evaporation. These pressures can drive (2) fracture,
and (3) the draining of the interstitial pores. Wavy cracks
were seen to advance behind the common fracture front. (b)
When drying is complete, each wavy crack is bounded on ei-
ther side by a straight crack.

crack’s bounding cracks. We therefore assume that there
is always sufficient driving force to propagate the wavy
crack quasi-statically, but that, otherwise, the stress gra-
dients in the mean direction of crack growth are small.
Within this gradient, the pre-crack stress, σ0, at the wavy
crack tip position is taken to satisfy the Griffith energy-
balance condition.

Fracture mechanics in a plane can be consistently
described[1] in terms of either the stress intensity factors,
KI and KII , which describe the variation of the opening
and shear stress distributions near a crack tip, respec-
tively, or a crack’s strain energy release rate, G. These
can take simple forms for a through-thickness crack in a
thin film adhered to a rigid substrate, and are related by
G = (K2

I + K2
II)/E, where E is the plane strain elastic

modulus of the film [1]. The stress intensity factors, and
hence G, can be calculated by an integral formulation
known as the weight function method [13, 14], which ac-
counts for the variations in pre-crack stresses along the
path of the crack. The dominant length scale entering
these calculations is the film thickness h, rather than the
crack length[15], and the overwhelming contributions to
KI and KII arise from stresses acting within a distance
h from the crack tip[12]. As shown in Fig. 4(a), the
wavelengths of our wavy cracks were typically an order of
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FIG. 2: Power spectrum for a wavy crack. Crack paths (a)
were imaged, and the displacements (b) of the wavy cracks
from the centre line between their two bounding cracks were
extracted. The power spectrum (c) shows a single well-defined
wavelength, which does not strongly depend on amplitude.
There are no observable harmonics, suggesting that the crack
path is close to sinusoidal, with a slowly varying envelope.
The power spectra of the bounding, straight, cracks did not
peak at any non-zero wavelength.

magnitude larger than both the wave amplitudes, and the
film thicknesses. The weight function method is simpli-
fied in this large-wavelength limit, and the tip of a wavy
crack is well approximated by a straight crack, inclined
at a small angle θ to the x-axis, with KI and KII propor-
tional to the pre-wavy-crack normal and shear tractions
evaluated at the crack tip position ~r. The leading term
of the energy release rate of a wavy channel crack is then

G =
h

cE
(σyy(~r)2 cos2 θ + σxx(~r)2 sin2 θ). (1)

A general theory of path prediction should be express-
ible either in terms of the energy release rate of a crack, or
the stress intensity factors around its tip. For a smooth
in-plane crack whose path ~r(s) is parameterized by a path
length s, there are tangent and normal unit vectors, t̂,
and n̂ at each point along the path, as shown in Fig. 3.
Here, as argued by Hodgdon and Sethna[16], the prob-
lem of path prediction simplifies to that of identifying a
curvature function A such that d2~r/ds2 = An̂. In order
to be independent of the choice of normal vector (which
can be defined in either of two directions), A must change
sign[16] under the transformation of n̂ to −n̂.

For a straight crack subject to uniform biaxial stress,
the initial direction of crack growth[17] is that which
maximizes G. Path prediction in more complex situa-
tions has remained problematic. Often, the direction of
maximum energy release rate coincides with the direc-
tion where the criterion of local symmetry, KII = 0,
holds. Much attention has therefore focused on the
rigorous application of the criterion of local symmetry,
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FIG. 3: Geometry of a wavy crack. A crack of wavelength λ
advances in the positive x-direction of a film of thickness h,
with pre-existing cracks at y = ±b. At each point there are
unit vectors tangent t̂ and normal n̂ to the crack tip, rotated
by an angle θ from the x-y axes.

which has been assumed to be maintained along the path
taken[2, 18–21]. However, recent experiments have shown
that wavy cracks in quenched glass, in fact, advance with
KII 6= 0[8]. The two most well-developed modifications
of local symmetry are that the curvature, A, is propor-
tional to either −KII , or −∇KII · t̂; both models choose
paths that attempt to minimize |KII |, and can also de-
scribe features of wavy cracks in thermally quenched glass
plates[16, 19–23]. When applied to our system, however,
they do not predict periodic paths, but rather cracks
that curve directly to intersect with one of the bounding
cracks, after any perturbation. Either additional physics
is needed to successfully model wavy channel cracks, or
an alternate formulation is necessary. Following the lat-
ter approach, we here suggest a simple energy-based the-
ory of crack paths, which can be applied broadly.

A crack path prediction may be constructed from the
principle of maximum energy release rate. We argue that
a crack will advance in a way that attempts to maximize
G. The simplest model that follows from this principle,
and respects the symmetries [16] and geometrical con-
straints of the problem, is

d2~r

ds2
=

(
1

α
∇G · n̂

)
n̂, (2)

where α is a constant with dimensions of energy release
rate. Under this proposition, an advancing crack will
curve toward the direction that will release the most en-
ergy, with a curvature that is proportional to the local
gradients in the energy release rate. More generally, a
contribution to Eqn. 2 involving the direction of crack
inclination, ∂G/∂θ, is allowed, but this will be vanish-
ingly small in the long-wavelength limit.

A crack, travelling near the centre line between two
bounding cracks, will release more strain energy by in-
clining away from that line. However, in doing so, it
must advance towards one of the bounding cracks, which
have already reduced the strain energy available in their

vicinity. Eqn. 2 predicts that this gradient in energy re-
lease rate will eventually force the growing crack to curve
back towards the centre. During the crack’s excursion,
on one side of the centreline, the gradient in energy re-
lease rate, and thus the curvature, will retain the same
sign. Therefore, the crack will move back towards the
energy-rich central region at an ever increasing angle,
returning there inclined towards the opposite bounding
crack. Repetition of this cycle can yield a periodic crack
path. Quantifying this prediction involves applying the
energy release rate derived in Eqn. 1 to the path pre-
diction law given in Eqn. 2. Keeping only the leading
order terms in the displacement y of the crack tip from
the centreline, and simplifying for the case ebc/h � 1,
yields an equation for the motion of the crack tip

d2y

dx2
= −

(
4Gcc

2e−cb/h

αh2

)
y (3)

in the form of an undamped wave equation, where Gc =
hσ2

0/cE is the fracture energy, or critical energy release
rate. This predicts sinusoidal crack paths, with a wave-
length λ that depends on both the film thickness h, and
the crack spacing b. In particular,

ln

(
λc

πh

)
=

1

2
ln

α

Gc
+
bc

2h
(4)

where c is a known constant, and b, h, and λ are experi-
mentally observable length-scales.

To test our crack path model, the shapes of wavy
cracks were observed in dried colloidal films. We observed
the drying of a variety of dispersions: 8 mono-disperse
preparations of colloidal polystyrene, with particle diam-
eters between 100 and 400 nm, and in three grades of
Ludox, with particle diameters between 5 and 22 nm.
Wavy cracks were found in all materials, with no obvi-
ous superficial differences. Quantitative attention was
then focussed onto a single dispersion, that of 100 nm
polystyrene. The wavelength λ and bounding crack sep-
aration b of 119 individual wavy cracks were measured us-
ing an optical microscope. These cracks were observed in
a set of films, with dried film thickness h between 2 and 31
µm, as measured by scanning profilometry (Veeco Dek-
tak 3M). Error estimates were made through repeated
measurements on a subset of cracks, with average errors
of 5% in the wavelength λ, 3% in the spacing b, and 10%
in the height h.

As the film thickness, h, increased, the average crack
spacing and wavelength both increased. For cracks ob-
served over a restricted range of b/h, for example between
3 and 3.5, but over the full range of film thicknesses, there
was no significant correlation between the scaled wave-
length λ/h and the film thickness (correlation coefficient
= 0.1). For wavy cracks observed at the same h, the
wavelength depends on the separation b of the bounding
cracks, as demonstrated in Fig. 4(a). Given the scatter
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data are binned in cw/h, as experimental uncertainty in this axis is lower than in cb/2h axis.
if we fit y = mx+b, with both m, b free, with error-weighting (1/error 2̂),then m = 0.96±0.14.
For the shown fit, m = 1.

Wavelength selection for wavy cracks
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FIG. 4: Wavelength selection. (a) The wavelength depends on both the film thickness h, and the separation b of the bounding
cracks. For films of the same thickness (here h = 6±0.5 µm), the wavelength increases as b/h increases. (b) Scaling of the
wavelength. Raw data are shown as solid points, with binned data (open circles) highlighting the means and standard deviations
of the observations. Along these axes, if the crack path is responding to gradients in energy release rate, Eqn. 4 predicts a
slope of 1, and an y-intercept of order 1. A least-squares linear regression of the raw data finds a slope of 0.96±0.1. The solid
line shows the predicted slope of 1, where the intercept (0.64±0.03) alone has been fitted to the data by least-squares fitting.

in the data, it is difficult to distinguish between a linear
and an exponential relationship. However, as shown in
Fig. 4(b), the data are in full agreement with the pre-
dicted wavelength scaling of smooth cracks advancing up
gradients in G. Furthermore, the data suggest that the
dimensionless group α/Gc is of order one, or that the
unknown constant α in Eqn. 2 is proportional to, and
approximately equal to, the fracture energy.

Wavy crack patterns form from channel cracks in thin
colloidal films under simple, repeatable conditions. Here,
the leading-order predictions of existing crack path mod-
els do not predict periodic crack paths. Instead, the wavy
cracks agree with crack paths that seek to maximize their
energy release rate. We have shown how to adapt this
principle into a law of crack path propagation, which is
capable of describing the progress of a crack interacting
with the complex stress states commonly encountered in
engineering, or the physical and earth sciences.
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