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Abstract

Cross-polarization experiments were done to observe and quantify the diffusion of spin polariza-

tion between hydrogen nuclei and phosphorus nuclei, at the surface of an indium phosphide powder

coated with 4-trifluoromethylbenzylbromine. I report a series of models describing this spin diffu-

sion, and present NMR results confirming predictions of these models. I show that spin diffusion

occurs efficiently across this organic-semiconductor interface. I also show how spin polarization

can be manipulated with simple pulse programs. This research will be of use in the development

of a technique to enhance NMR signals by the optical pumping of semiconductors.
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I. FORWARD

The aim of these experiments is to observe and quantify the diffusion of spin polarization

across the interface of a semiconductor and an organic molecule. My primary motivation

is to help develop a technique, using optical pumping and spin diffusion, to enhance the

NMR signal of both very large biological molecules, and samples available only in very small

quantities. Using the stimulation of a properly polarized laser, one can selectively excite

particular spin states of electrons within a semiconductor. As these excited electrons return

to equilibrium, they may transfer their spin polarization to the semiconductor’s nuclei.

This can lead to very high spin polarizations within the semiconductor. The subsequent

development of my work will involve attempts to transfer this large spin polarization into a

biological sample on the surface of the semiconductor.

In reporting the performed experiments, and in their future development, a number of

NMR techniques will need to be explained. After a brief introduction to Nuclear Magnetic

Resonance, I shall discuss the general theory of cross-polarization, spin diffusion, magic

angle spinning and optical pumping in the first section. In the second section I will develop

the specific theory associated with my work, presenting some simple diffusion models. Then,

I will summarize my methods, and the experimental apparatus. I shall move on to report

and discuss the results of my experiments. I shall conclude with a summary of the observed

behavior of spin-diffusion in my samples.

II. INTRODUCTION AND BACKGROUND

A. Nuclear Magnetic Resonance

The techniques of nuclear magnetic resonance (NMR) are used to find detailed descrip-

tions of the structure of matter. Under an external magnetic field, a set of magnetic dipole

moments will tend to orient along the magnetic field. This principle has led to a variety

of techniques, such as nuclear magnetic resonance (NMR), electron spin resonance (eSR),

muon spin resonance (µSR), and magnetic resonance imaging (MRI). In the case of nuclei,

the spin of the nucleus produces a magnetic moment, which creates a slight preference for

the spin to be either aligned (or sometimes counteraligned) along a magnetic field. Classi-

cally, the set of the nuclei can be thought of as having a net magnetization vector, the sum
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of countless individual magnetic moments, which points along the magnetic field when in

equilibrium. Like a top precessing around a gravitational field, if the magnetization vector

is pushed off the external magnetic field axis, it will precess. The spinning magnetization

vector will produce electromagnetic waves, which can be measured. The precession fre-

quency depends on the surroundings of the precessing nuclei, and information regarding its

chemical environment can be deduced from NMR observations. Both the perturbation from

equilibrium, and the measurement of the dipole radiation can be done with a simple radio

frequency coil. I shall try to sketch out the necessary concepts. Further discussion on the

principles of NMR may be found in specialized textbooks [1] [2].

Now for a bit more detail. A nucleus possesses an angular momentum and a magnetic

moment, both arising from the quantum mechanical spin of its components. The magnetic

moment !µ will be related to the spin, !I, by !µ = γ!!I. The constant γ is the gyromagnetic

ratio, which is different for each nuclear species. Normally, the spin will be aligned randomly

in a discrete set of spin states. For example, both hydrogen and phosphorus nuclei have spin

1/2, and so will be in either a +1/2 or -1/2 spin state. Under an external magnetic field,

B0, these spin states will acquire distinct energy levels, with an energy difference between

levels of -µB0. The magnetic field felt by the nuclei is roughly that of the external field, but

it may change slightly depending on the local environment, a phenomenon called chemical

shift. If allowed to equilibrate, a large collection of nuclei can be described by a Boltzman

distribution. The probability of a single nucleus being in a particular state will then be

weighted by the factor exp(-E/kbT). Depending on the sign of γ, this implies that there will

be a preference for the nuclear spin to be either aligned, or counteraligned with the magnetic

field. At room temperature, this will lead to an average magnetization, or spin polarization,

on the order of 10−6! under a normal NMR field (say 10 Tesla). This may not be much, but

for a sample of a few milligrams, this can mean 1010 to 1015 nuclei can be polarized by the

field. Such a large number of individually quantized magnetic moments can be summed up

to give a macroscopic magnetization vector, !M , to a sample. For n nuclei

!M = γ
n∑

i=1

!!µi = γ!L, (1)

where !L is the total spin angular momentum. This magnetization vector is macroscopic,

and can be expected to behave classically.

If !M is not perfectly aligned with !B, it will precess, circling around the magnetic field.
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The equation of motion for !M will be

1

γ

∂ !M

∂t
= !M× !B. (2)

This equation is simply Newton’s second law in terms of rotation. The left hand side is

the rate of change of the angular momentum vector, while the right hand side is the torque

caused by the magnetic field. For a magnetic field in the z axis, equation 2 is solved by

Mx(t) = M0 sin(γB0t),

My(t) = M0 cos(γB0t),

Mz(t) = Mz0. (3)

In other words, the magnetization vector orbits the external magnetic field with a frequency,

the Larmor frequency, of γB0/2π. The changing !M will radiate electromagnetic waves at

this frequency, which can be detected by a very sensitive receiver. By observing the magne-

tization as a function of time, information about the frequency of the precessing nuclei can

be obtained by a fourier transform of the raw data. As each nucleus has a unique Larmor

frequency, the observed frequency can describe the composition of the sample. Further,

the tiny chemical shifts resulting from the nuclear surroundings are vital for distinguishing

different molecules from each other. The chemical shift of hydrogen, for example, can distin-

guish methane from methanol. In my experiments, the chemical shift of surface phosphorus

(bonded to exterior organic molecules), differs from the chemical shift of phosphorus inside

of a grain of indium phosphide. Looking at tiny shifts in frequency allows me to follow spin

polarization as it diffuses from the surface inwards.

But to observe all this, !M must be disturbed from equilibrium. This requires some

method of manipulating !M . This is done by using a radio frequency transmitter (often the

same coil later used as a receiver) to deliver a small rotating electromagnetic field to the

nuclei.

Conceptually, the response of a rotating magnetic moment to a rotating electromagnetic

field is one of the most difficult ideas of this subject. It can be described in detail, either

through the use of analytical mechanics to define the equations of motion in a rotating

reference frame, or through the time-dependant perturbation theory of quantum mechanics.

Both approaches are mathematically complex, although elegant, and full descriptions are

available elsewhere [3] [4]. In simple terms, if we apply an rf field at the same frequency
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as the precessing magnetization, then the magnetic field of the rf pulse, and magnetization

vector will be moving at the same angular velocity. Let us align the rf field such that its

magnetic field !B1 extends into the xy plane. To !M , this will look like a constant magnetic

field in that plane. As it did under the constant field !B, !M will precess around !B1. As the

rf field is much much weaker than the external field, this motion is both independent of the

original precession, and much slower. In the lab frame, !M will slowly spiral down, as it is

moved away from the z axis. If the rf frequency and the Larmor frequency are not matched,

then !B1 and !M will move relative to each other, and any precession will, over time, average

out.

Now we can describe the concept of phase. If we are free to choose a magnetic component

of the rf field anywhere in the x-y plane, we can then choose an amplitude and a phase. Let

us arbitrarily define a phase of 0 to be along the positive x′ axis, in the rotating frame. A

90 degree phase shift would then put !B1 on the y′ axis.

We can now do wonderful things with a simple rf field. For example, first apply a rf pulse

just long enough to move !M into the xy plane. This is called a π/2 pulse, as !M rotates by

π/2 radians. Now, if we shift the phase by 90 degrees, !M and !B1 are parallel. This is called

spin lock, as it can keep !M stored in the xy plane for long periods of time. Most NMR

experiments consist of a series of manipulations of !M achieved by playing with the rf field.

The particular rf pulse sequences I used for this experiment, and a description of what they

do, are found in the experimental methods section.

There are two last concepts to introduce here, the spin-lattice relaxation time T1, and

the spin-spin relaxation time T2. As I mentioned, in equilibrium the magnetization vector

is parallel to the external magnetic field. T1 measures how fast the system returns to this

equilibrium. For example, right after a π/2 pulse there is no component of !M in the z

direction, but over time the magnetization follows the evolution Mz(t) = M0(1-exp(-t/T1)).

The return to equilibrium occurs as the nuclei exchange energy with their surroundings,

be it through solitons in a solid, thermal excitations and jostling in a liquid, or through

intermediaries such as orbiting electrons. During spin lock, this decay occurs at a suppressed

rate, T1ρ. T2 relaxation measures how quickly !M decreases while in the xy plane. As

I stated, there are a spread of frequencies in most samples, caused by different chemical

shifts. Further, there will be inhomogeneities in B that will cause slight differences in the

precession rates across the sample. No matter what the source, this means that !M is made
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up of many vectors with slightly different Larmor frequencies. Thus, !M will decohere as

these different frequencies move away from each other. Over time, this causes the transverse

(xy) amplitude of M to decrease, roughly exponentially, to nothing. The time constant in

this exponential decay is T2

Although it is a powerful technique, NMR has some drawbacks. Most important to this

work is the size of the sample required to perform any experiments. In cases of large biological

molecules, protein for example, getting enough copies of the molecule to see via NMR can

be a major problem. The aim of this research is to investigate a possible technique to use

spin diffusion from an optically pumped semiconductor to transfer nuclear magnetization

into a surface layer.

B. Spin Diffusion

When, for some reason, a sample has an uneven distribution of nuclear magnetization, it

may display spin diffusion. This happens when nearby nuclei exchange angular momentum

via the dipole-dipole interaction [5]. The spin Hamiltonian [6] of an NMR sample consists

of

H = −γ!B0

N∑

j=1

Ijz + !
∑

i$=j

Bij(IizIjz) − !
∑

i$=j

Bij

4
(Ii+Ij− + Ii−Ij+)), (4)

where B0 is the applied magnetic field, γ is the gyromagnetic ratio, Ii is the spin of the ith

nuclei, and the operator Bij is defined by

Bij =
1

2
γ2!r−3

ij (1 − 3 cos2(θij)). (5)

Here, rij is the displacement vector joining nuclei i and j, while θij is the angle this vector

makes to the external magnetic field. The first term in this Hamiltonian represents the energy

of a collection of independent spins in a magnetic field, and leads to the time dependance of

equation 2. The second term is a Zeeman term, which accounts for the perturbation of the

spin energy from the magnetic field induced by nearby spins. However, these terms contain

no means of dynamic spin interaction. It is only the last term, invoking a dipole-dipole

interaction, which allows two nearby spins to exchange energy and angular momentum.

Classically, diffusion obeys the heat equation,

Ut = D∇2U, (6)
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for some diffusion constant D, and density variable U. It turns out that the exchange of spin

polarization via the dipole-dipole interaction can be approximated by this simple differential

equation. The details and justification are described elsewhere [5] [7], but a plausibility

argument can be provided. Let U(x,t) be the spin polarization density at position x and

time. Then, based upon the hamiltonian of equation 4, U will evolve by

Ut =
i

! [U,H]. (7)

Comparing equations 6 and 17, one sees that, assuming the approximation is valid, we can

find the value of D by

D∇2U =
i

! [U,H]. (8)

Now, the evolution of the spin density is equivalent to the evolution of individual spin states,

so for a spin Ii

D∇2Ii =
i

! [U,H]

= − i

! [Ii, !
∑

j $=i

Bij

4
(Ii+Ij− + Ii−Ij+)]. (9)

To proceed further, as a reasonable first guess, we assume that the angle θij is randomly

distributed. Then

< Bij > =
γ2!
2rij

< 1 − 3cos(θij) >= −γ2!
4rij

, (10)

D∇2Ii =
i!γ2

16r3
ij

[Ii,
∑

j $=i

Ii+Ij− + Ii−Ij+]. (11)

Now, crudely, one can interpret the equation for spin transfer Ii+ Ij− + Ii− Ij+ as a differential

in I, rij
∂

∂rij
Ii. Acting similarly with the commutator yields an estimate for the diffusion

equation of

Dij $
γ2!
16rij

. (12)

This is very bad quantum mechanics, but gives a dimensionally correct estimate. The con-

sideration of the prefactor 1/16 is also somewhat insightful. Equation 12 can be generated

on purely dimensional grounds, without this prefactor.

9



Upon working through the full mathematical treatment of the Hamiltonian of equation

4, the authors of spin diffusion papers came up with similar estimates. Lowe and Gade [5]

calculate that, for a bcc simple cubic lattice, to within 50% that

D $ 0.15
γ2!
r

, (13)

where r is the distance between nearest neighbors. A similar calculation by Redfield and Yu

[7] comes up with the estimate

D $ 0.04
γ2!
r

. (14)

Both these calculations are based on simple cubic lattices. However, other lattice shapes

should only introduce small geometric corrections into the diffusion constant.

Let us try find the spin diffusion constant for indium phosphide, the semiconductor used

in my experiments. The above estimates are all consistent with each other, and may be

summarized in an order of magnitude approximation as D $ 0.1γ2!
r . Indium phosphide

has a gyromagnetic ratio of 1.08·108 rad/T s. The spacing between adjacent nuclei can

be calculated as 3.7 Å, given that the density of InP is 4.787 g/cm3. This gives the best

estimate of D, to within a factor of 2 or so, as 3 · 10−17 m2/s.

C. Hartmann-Hahn Cross-polarization

How can spin polarization move between nuclei of different species? Not only does angular

momentum have to be conserved, but so does energy. The spin states of all nuclei are

quantized in units of !, but the energy quantization is dependant on the magnetic field. For

a given nucleus,

∆E = !ωlarmor = !γB0. (15)

In order for cross-polarization, where spin polarization can shift between nuclear species,

we have to arrange for nuclei with different γ’s to have the same energy difference. This

is done by the Hartmann-Hahn condition, named for the original researchers who proposed

the technique in 1962 [8]. We need to subject the two sets of nuclei to magnetic fields such

that

γ1B1 = γ2B2. (16)
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As the external magnetic field B0 is fixed, it cannot be used to achieve this condition.

This trick is done through two rf fields, each at one of the necessary Larmor frequencies.

The rf fields do not interfere with each other, as a precessing nucleus will only respond to

an rf field precisely tuned to the precession frequency. The field intensities can be set to the

necessary ratio, and spin diffusion can occur exactly as it does between homogeneous nuclei.

Let me go through the general procedure using a preexisting hydrogen magnetization,

!MH to polarize phosphorus nuclei. !MH is initially in the z direction. After a π/2 pulse, we

spin lock one rf frequency on !MH . It will then be fixed in the x-y plane. Here I should discuss

spin lock in a bit more detail. In the rotating reference frame, !MH is parallel to what it sees

as the constant magnetic field !B′
H , which is in the xy plane. Consider a small perturbation

to !MH , caused through T2 relaxation. This will cause !MH to precess about !B′
H , eventually

reaching a point 180 degrees from the original perturbation. But T2 relaxation occurs when

different components of !MH precess at different rates. This means that a spin precessing

slightly faster than average will, over time, be swung behind the average magnetization. This

auto-correction allows the magnetization vector to maintain itself for times much longer than

normally allowed by T2 relaxation. A similar argument can be made for T1 relaxation. The

decay of a spin locked magnetization will follow a time constant known as T1ρ.

If there is a second rf field at the phosphorus resonance, it will initially carry along

with it no spin polarization. However, when the field intensity is raised to (γH/γP )B’H , the

Hartmann-Hahn condition is satisfied, and spin polarization diffuses freely between hydrogen

and phosphorus nuclei.

D. Magic Angle Spinning

In the Hamiltonian discussed for spin diffusion, equation 4, one may note that with a

judicious choice in the angle θij, the spin hamiltonian reduces to the hamiltonian of a set

of non-interacting spins in a magnetic field. This is the ’magic angle’ θij = 54.73o where

3cos2(θij) - 1 = 0. θij represents the angle the magnetic field makes to the vector joining the

two spins i and j. If one spins the NMR sample at this magic angle, then the time average of

all Rij will be 54.73o, assuming the sample is spin quickly enough. In effect, this technique

is useful if you spin at an angular frequency faster than the dipole broadened width of

the resonance. Unfortunately for my experiments, suppression of dipole interactions at the
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magic angle also suppresses the interactions causing spin diffusion.

III. THEORY

A. Diffusion Models

In my experiments, I have worked exclusively with observing spin diffusion between a

hydrogen reservoir in a thin coating of 4-trifluoromethylbenzylbromine (TFMBB), and a

fine grained indium phosphide powder. As I have described, spin diffusion can be modelled

effectively by the classical heat (or conduction-diffusion) equation

Ut = D∇2U (17)

with diffusion constant D. Investigating the properties of simple diffusion models has pro-

vided insight into my results. In this section, I shall describe a series of models, progressing

from the trivial to the more complex descriptions of spin diffusion, as they pertain to cross-

polarization from a hydrogen surface to an inner phosphorus layer.

In general, I shall only consider diffusion in one direction. On the timescales of up to

a few seconds, spin diffusion only occurs over a few tens of angstroms. Thus, the particles

may be considered as infinitely ’deep’, with interesting effects only happening over a thin

surface. In one dimension, equation 17 reduces to

Ut = DUxx (18)

1. Diffusion from a point source

Consider the situation where polarization is initially concentrated at the surface of a

sample, and subsequently diffuses inwards. This may be the case just after cross polarization

between the organic surface and the semiconductor has occurred. A brief cross polarization

phase may be followed by a much longer delay before acquisition. This evolution can be

modelled by the set of equations

Ut = DUxx, −∞ < x < ∞, t ≥ 0,

U bounded as | x |→ ∞, U(x, 0) = δ(x), (19)
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where U(x,t) represents the spin polarization density at a point. I have extended the domain

from 0 to −∞ by noting that the boundary conditions (BC) for U should be Ux(0,t) = 0.

As the initial conditions are symmetric about x=0, the BC continue to be satisfied through

this extension. This is analogous to the method of imaging used in electromagnetics. These

equations can be solved via Fourier transforms, where

V (k, t) =
1

2π

∫ ∞

−∞
U(x, t)e−ikxdx,

Vt(k, t) = −Dk2V (k, t), V (k, 0) =
1

2π
. (20)

To satisfy the initial condition, and the BC’s at infinity, the solution for V is

V (k, t) =
1

2π
e−Dk2t, (21)

which corresponds to the gaussian solution for U of

U(x, t) =
1√

4πDt
e−x2/4Dt. (22)

Of particular interest, here, is the average distance travelled by the diffusing spin polariza-

tion. The flow of spin polarization away from the surface should be detectable as a slight

time dependant change in the chemical shift of the phosphorus signal. It will also give a

measure of the volume of a semiconductor involved in the spin diffusion process. When

experiments are done in the reverse direction, and spin polarization is moved from a semi-

conductor into a surface molecule, this is of importance. The mean value of U in this model

is simply

X(t) =< U(x, t) >=

∫ ∞
0 xex2/4Dtdx∫ ∞
0 ex2/4Dtdx

=
√

4Dt/π. (23)

For perspective, with a diffusion constant of 10−17 m2/s, it will take 0.025 s for spin polar-

ization to diffuse an average of 5Å, and 20 s to diffuse 140Å.

2. Diffusion from a constant source

While the hydrogen polarization is in contact with the phosphorus via cross-polarization

(and vice-versa), a different model is appropriate. Initially, we can approximate the source

as having a constant spin polarization density, implying a constant spin temperature, and

have this polarization move into an initially empty region. This does not conserve the total
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spin polarization in the system, but is a realistic model for very short cross polarization

times. If we assume that only the surface molecule of organic material contributes spin, we

have an initial spin polarization in only a few Å. The previous model suggests that for times

of only a few ms, this is a realistic approach. As we shall later see, it is in fact the short

T1ρ of the surface hydrogen that will account for the limited accuracy of this model when

analyzing my experiments.

Consider the system described by the equations

Ut = DUxx, 0 < x < ∞, t ≥ 0,

U bounded as x → ∞, U(x, 0) = 0, U(0, t) = U0. (24)

Where the term U0 is proportional to the spin polarization density of the source, and D is

the diffusion constant. This can be solved with Laplace transforms:

V (x, s) =

∫ ∞

0

U(x, t)e−stdt.

sV (x, s) = DVxx(x, s), V (0, s) =
U0

s
, (25)

which has the solution, when the BC at infinity are considered, of

V (x, s) =
U0

s
e−x

√
s/D. (26)

Taking the inverse Laplace transforms yields the equation

U(x, t) = U0Erfc(
x

2
√

Dt
) =

2U0√
π

∫ ∞

x/2
√

Dt

e−λ
2
dλ. (27)

With this model, we can calculate the total spin polarization that has crossed the boundary

as a function of time – a measurable quantity that is of some importance. If η(t) represents

the total polarization in the phosphorus, then by integrating,

η(t) =
2U0√
π

∫ ∞

0

∫ ∞

x/2
√

Dt

e−λ
2
dλdx

=
2U0√
π

∫ ∞

0

∫ ∞

1

x

2
√

dt
e−λ

′2x2/4Dtdλ′dx (28)

where I have made the change of variable λ = x
2
√

Dt
λ′. Upon switching the order of integra-

tion,

η(t) =
2U0√
π

∫ ∞

1

∫ ∞

0

x

2
√

Dt
e−λ

′2x2/4Dtdxdλ′ =
2U0

√
Dt√

π

∫ ∞

1

1

λ′2dλ′ = U0

√
4Dt

π
(29)

You may note that this is the same function as the average distance found in the previous

model, apart from a scaling factor that accounts for the spin density of the source.
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3. Diffusion from a decaying source

As I mentioned, the failure of the previous model to fully describe these experiments is

mainly due to a short T1ρ in the proton spin reservoir . A slightly modified model can take

this decay of the source into account:

Ut = DUxx, 0 < x < ∞, t ≥ 0,

U bounded as x → ∞, U(x, 0) = 0, U(0, t) = U0e
−t/τ . (30)

Again, we can solve this using Laplace transforms. This gives the s-space representation

V (x, s) =
U0

s + 1/τ
e−x

√
s/D. (31)

Using the convolution theorem for Laplace transforms, this yields

U(x, t) = U0

∫ t

0

x

2λ
√
πλD

e−(t−λ)/τe−x2/4Dλdλ, (32)

a truly terrifying proposition. Fortunately the total polarization that has diffused into the

sample, η(t) reduces to a simpler form.

η(t) = U0

∫ ∞

0

∫ t

0

x

2λ
√
πλD

e−(t−λ)/τe−x2/4Dλdλdx

= U0

∫ t

0

1

2λ
√
πλD

e−(t−λ)/τ

∫ ∞

0

xe−x2/4Dλdxdλ

= U0

∫ t

0

1

2λ
√
πλD

e−(t−λ)/τ2Dλdλ

= U0

√
D

π
e−t/τ

∫ t

0

1√
λ

eλ/τdλ

=

√
4Dτ

π
e−t/τ

∫ √
t/τ

0

eλ
′2
dλ′. (33)
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For short times, further simplification can be made. By a change of variables, the above

integral representation becomes

η(t) = U0

√
4Dt

π
e−t/τ

∫ 1

0

etσ2/τdσ

= U0

√
4Dt

π
e−t/τ

∫ 1

0

1 +
tσ2

τ
+

t2σ4

2τ 2
+ ...dσ

= U0

√
4Dt

π
e−t/τ (1 +

1

3

t

τ
+

1

2 · 5
t2

τ 2
+ ...)

= U0

√
4Dt

π
e−t/τ (et/3τ +

2

45

t2

τ 2
+ ...)

$ U0

√
4Dt

π
e−2t/3τ , (34)

where the 2nd order corrections reach only 3 % of the solution when t = τ . In the region

where t < τ , this is a good approximation. I use this equation to describe the flow of spin

polarization from an organic surface layer into a semiconductor. Unfortunately, the approx-

imations made, namely in choosing an infinitely deep boundary condition, and assuming

that the relaxation rate of the destination nuclei is much less than that of the source, do

not easily allow this solution to be applied to the reverse experiment of spin polarization

diffusing from the semiconductor into the thin organic surface.

4. A numerical simulation

The previous result has reached the limit of my skills as a mathematician. Further com-

plications on the basic diffusion calculation render the calculations so difficult that I cannot

solve them analytically. Yet, there are a number of unsavory assumptions built into my

models that can significantly change the model behavior. Two are worth considering fur-

ther. First, with the given boundary conditions, the total spin polarization is not conserved.

As much polarization as is required can flow across the boundary at x=0. If there were a

limited store of spin polarization in the system, then we need to somehow include that in the

calculations. Further, if there is only a limited amount of spin polarization in the boundary,

then moving it back and forth across x=0 should change the boundary intensity – the decay

would no longer be purely exponential, but would include a drain or source term depending

on the polarization density at x=0.
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Both these difficulties can be overcome through a numerical simulation of what I best

understand to be the dynamics of my samples. A thin reservoir, in which both diffusion and

T1ρ relaxation occur, models the hydrogen surface layer. It is linked to a very deep, initially

vacant, diffusive body, representing the phosphorus nuclei in the InP. In mathematical terms,

I want to numerically solve

Ut = {DUxx−U/T1ρ if x < x0

DUxx if x > x0
(35)

for the domain [0,∞], with an insulating boundary condition at x=0, and an initial condition

where U is constant on 0 < x < x0, and 0 elsewhere.

To do this, I used Excel to calculate the discrete form of equation 35, where

U0,t+1 = U0,t −
∆t

T1ρ
U0,t +

D∆t

∆x2
(Ux+1,t − Ux,t) (36)

Ux,t+1 = Ux,t −
∆t

T1ρ
Ux,t +

D∆t

∆x2
(Ux−1,t − 2Ux,t + Ux+1,t), 1 < x < 20

Ux,t+1 = Ux,t +
D∆t

∆x2
(Ux−1,t − 2Ux,t + Ux+1,t), 20 ≤ x < 200.

As initial conditions, I set Ux,0 to 1 for 0 ≤ x < 20, and to 0 elsewhere. My step sizes were

∆x = 0.2 Å, ∆t = 5 µs. This corresponds to a 4 Å hydrogen source layer and a 36 Å InP

layer. I used the diffusion constant D = 3·10−17 m2/s, and a T1ρ relaxation rate of 10 ms. I

ran this simulation up to 30 ms.

First, to check that only negligible amounts of spin polarization were escaping out of the

open phosphorus boundary, and to see what the distribution of spin polarization might look

like, I looked at the spin density as a function of x, at t = 5, 10, and 25 ms. These are

shown in figure 1. The maximum spin polarization in the phosphorus reaches about a third

of the total initial spin polarization.

Now, as a test of the validity of the previous model, I plotted

U(t) =
1

2∆x

√
4Dt

π
e−2t/3T1ρ (37)

with the same constants as the model. The numerical and analytic models are compared in

figure 2. As you can see, although the models match for the initial rise in spin polariza-

tion, they disagree on the rate of decay of that polarization in the phosphorus. The models

are in agreement to within 10% for all times t<T1ρ. And, for experiments done with very

short contact times, less than about 3-5 ms in this case, there is little difference between
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FIG. 1: Numerical model of spin polarization density, at 5, 10, and 25 ms (from top to bottom at

x=0, respectively), normalized to initial spin polarization density.

the predicted curves. In this region, the analytic model is superior, as with only two free

parameters and a simple functional form, it can be easily fit to data. Evaluating the numer-

ical model with sufficient accuracy to produce reasonable graphs took a lot of computing

time and power (several million excel cells were evaluated). Fitting the numerical model

to data would involve tweaking several parameters by hand, and would lack a clear error

estimate on those parameters. However, the results of spin diffusion involving contact times

longer than T1ρ can be easily compared to qualitatively check this model. Finally, I tried

fitting equation 37 to the numerical results, using Gnuplot to optimize the intensity and

T1ρ, using only the first 3 ms. The results for intensity did not significantly differ, but the

T1ρ estimate was overestimated by 10%. A similar result was found using T1ρ = 16 ms.

This sets a reasonable best case limit on the accuracy of T1ρ measurements through these

models.
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FIG. 2: Numerical model of the total phosphorus spin polarization (upper curve), compared to the

prediction assuming a simple decaying source (lower curve).

B. Predictions of the diffusion models

The model from a decaying point source predicts the most experimentally observable

behavior. Integrating equation 34 over the entire surface gives us the total phosphorus

signal of the sample as

P (t) = Aρ(H)ε

√
4Dt

π
e−2t/3T1ρ . (38)

Here, ρ(H) refers to the spin density of the hydrogen in TFMBB, D is the diffusion constant,

A is the surface area of the sample, and T1ρ is the relaxation rate of the hydrogen spin

reservoir, in spin lock. I have also included, for completeness, a surface efficiency parameter,

0 ≤ ε ≤ 1. A number of assumptions must be made to evaluate P. First, we assume that

the surface is sufficiently smooth to allow the 1-d diffusion equation to hold – if this is

not the case, we note that near a point (considering diffusion into a conical surface) or

edge, the flow of spin into the phosphorus will be diminished. This geometric effect can be

absorbed into ε, if need be. We also assume that there is no resistance to spin diffusion
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across the organic-semiconductor interface while cross polarization occurs. In other words,

we assume a polarized phosphorus (or hydrogen) nucleus at the surface is equally likely to

transfer that polarization in either direction. As I cannot estimate either of these effects, and

believe them to be minimal, we therefore assume, unless proven otherwise, that ε = 1. We

then assume that a thin layer, one molecule thick and completely coating the particles, of

TFMBB is supplying the source of spin polarization during these experiments. We initially

assumes that, as cross polarization is a dipole effect only occurring between very close

molecules, any TFMBB not directly attached to the phosphorus will not interact with the

semiconductor. But, as the measured T1ρ of the surface hydrogen is much shorter than

the time for spin to diffuse even a few angstroms, this assumption can be easily relaxed.

When I repeated my simulation with a hydrogen layer of 6 Å, there was only a couple

percent increase in the phosphorus spin polarization. However, if the organic molecule does

not completely coat the surface of the InP grains, we could overestimate the expected spin

polarization transfer. We also assume that the density of TFMBB is equal to that of the

liquid form, where the specific gravity is 1.546 g/cm3. This corresponds to a hydrogen

density of 1.96 · 1028H/m3. With a Boltzman distribution of spin (as ∆E is small, I make

the approximation e∆E/kBT $ 1 + ∆E/kBT ) , this yields a spin density of

(1.96 · 1028)
1
2(1) − 1

2(1 + ∆E/kBT )

2 + ∆E/kBT
!/m3 = 3.8 · 1023!/m3,

where ∆E is calculated from the energy of a photon required to excite the hydrogen reso-

nance at 400 MHz. Finally, with no direct way to measure the diffusion constant, we shall

also have to assume that the Lowe and Gade model, predicting D ≈ 3 · 10−17 is correct.

This allows us to expect, for example, in a sample with 0.5 m2 surface area at 22oC, that

P (t) ≈ 1015
√

te−2t/3T1ρ!s−1/2. (39)

As many of our assumptions ignored effects that could decrease this flow rate (the TFMBB

might not fully coat the particles, not all hydrogen might fully contribute, or the geome-

try might inhibit diffusion for example), this may be regarded as a tentative upper limit.

However, the largest uncertainty is in the diffusion constant, D, which is only predicted to

within a factor of about 2 or 3. If diffusion occurs within a range of 1014 to 1015 ! s−1/2,

that is all that can be expected. The theory, however, does provide a valuable functional

form that we can fit our diffusion data too. As we shall later see, this form is a very good

fit to the data.
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FIG. 3: The expected bonding of the 4-trifluoromethylbenzylbromine to the surface of an indium

phosphide grain. The bromine atom is replaced by a carbon-indium bond.

IV. EXPERIMENTAL SETUP AND METHODS

A. Sample preparation

Bulk pieces of indium phosphide, a common semiconductor, were ordered from Aldrich,

as was stock solution of 4-trifluoromethylbenzylbromine (TFMBB). The organic reagent was

chosen because of it’s small size, and the presence of a strongly interacting bromine atom.

Spin diffusion had been previously observed, but not quantified, using these two chemicals

[9].

Upon contact with indium phosphide, the bromine of the TFMBB reacts with the surface,

as shown in figure 3. However, InP also reacts with oxygen and water in the air. To provide

a clean surface for the TFMBB to bind to, the reagents must be prepared in an inert

atmosphere.

I first diluted the stock solution of TFMBB with acetonitrile to form a 0.5 M solution. 2.00

ml of this solution was pipetted into a ground glass round bottomed flask. Approximately

0.25 g of InP chunks were measured into a small mortar and pestle. The flask, mortar

and pestle were placed into a small glove bag, which was then sealed. To ensure that a

clean, dry nitrogen atmosphere was in the bag, I inflated and deflated the bag three times

with nitrogen. During each inflation, the flask was opened in the glove bag, and N2 was

sprayed into it to remove any residual air. In this N2 atmosphere I ground up the InP, with

mortar and pestle, and then dumped the resulting powder into the 0.5 M TFMBB solution.

I then left the sealed flask in a water bath at 60oC, for 2-3 hours. This allowed the TFMBB

to bind to the surface of the InP; the reactive bromine tailing the organic molecule was

expected to react with the indium and leave a carbon-indium bond. I was careful to keep
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the temperature of the bath below the boiling point of TFMBB, given as 65-59oC in the

MSDS. The mixture was then taken out of the bath, and allowed to settle. To rinse the InP

powder, the solution was decanted, and pure acetonitrile was added. I decanted the solution

4 to 5 times. After the final rinse, I let the remaining fluid evaporate. For the last sample, a

centrifuge was used to help the smallest particles precipitate. The samples were divided, to

give at least 100 mg of powder for NMR analysis, and up to 100 mg for surface area testing.

Three samples were prepared, where the grinding time was 5,10 and 15 minutes. This was

done to prepare a variety of surface areas, per unit mass, for the experiment. The NMR

samples for the first, second and third powder samples are, respectively, 0.1207 g, 0.1005 g,

and 0.1857 g.

B. Surface area measurements

Initially, I was working with a Micrometrics ASAP 2000 surface area measuring machine.

This device takes a powdered sample, and attempts to measure the surface area by analyzing

the volume of adsorbed gas that sticks to the particles at different pressures. Essentially, it

consists of feeds to analysis gasses, various pumps, a cold trap, and temperature and pressure

sensors. A sample is loaded into a sample tube, and then evacuated. To remove any residual

surface contaminants from the air, the sample is then cooked at 350oC, under vacuum, for

several hours. It is then pumped to a full atmosphere of the analysis gas, usually nitrogen,

and re-evacuated. Once the pressure has dropped to the pumping limits, an analysis run

can be started. The sample tube is suspended over a bath of liquid nitrogen. The tube is

partially surrounded by a seemingly useless plastic tube, and a styrofoam circle is placed at

the top to slow down the evaporation of the N2 bath. During analysis, the sample is moved

into the N2 dewar, and set amounts of analysis gas are repeatedly pumped onto the sample,

the pressure is measured, and the gas evacuated. This machine is very, very, finicky, and

in order to even come close to repeatable results, this full procedure needed to be repeated

exactly before every run. The analysis results are a measurement of the BET and Langmuir

surface areas. There was little difference between these two results, however, as the BET

results quoted lower error, they seemed preferred. When I report surface areas, they are the

BET measurements.

While I was working with the Micrometrics machine, it was in the process of a long,
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excruciating breakdown. Thus, even after a valiant struggle, I was not able to get believable

results from it. Instead, I was forced to find an alternative.

To complete my surface area testing, a Mastersizer 2000 was used. This is a simpler,

and more reliable measurement, and can be done much more quickly than tests on the

Micrometrics equipment. The test is non-destructive, and only takes 20 s. The InP powder

is suspended in water. In this suspension, the particles tended to clump up, but through

vigorous stirring and ultrasonic vibration this problem was minimized. Blue light is shone

through the sample, and by measuring the scattering angle and intensity, one can estimate

the particle size and surface area distribution. Only preliminary measurements have been

done with this instrument.

C. NMR setup and pulse programs

I used a 9.4 Tesla Varian/Oxford NMR spectrometer, with hydrogen resonance at 400

MHz, for my experiments. About 100 mg of prepared sample was packed into a sample

rotor, and placed into a double resonance probe. The system was tuned to deliver RF

pulses at the hydrogen (399.749 MHz) and phosphorus (161.797 MHz) resonant frequencies.

Hartmann-Hahn cross-polarization conditions were used, as outlined in the introduction, to

allow spin to move back and forth between hydrogen and phosphorus. To perform the range

of experiments I wished to study, I had to modify the Varian xpolar1 pulse program. This

program allows cross-polarization to be directly followed by measurement. I created the

xpbakup program to include a delay, d3, between cross polarization and acquisition. During

this delay, the phosphorus spin polarization is stored along the external magnetic field, and

accessed, via a pair of π/2 pulses. The xp2 program adds a second cross-polarization phase

after this delay, to allow spin polarization to be returned to the hydrogen nuclei. The pulse

programs are summarized in figure 4.

In xpolar1, a π/2 pulse is immediately followed by a spin locked cross polarization pulse,

with a phase difference of 90o, and an acquisition period either in phase, or 180o out of phase

with the spin lock pulse. Repetitions of an experiment, of which there were typically several

thousand, cycle through four different phase cycles – with the phase of the initial pulse

changing, along with the phase of the acquisition period. These changes average out any

signal that would otherwise grow into the phosphorus or hydrogen as a result of T1 relaxation.
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This ensures that the only signal reported is that which has diffused into the phosphorus

from the hydrogen. The xpbakup and xp2 programs had significantly more complex phase

patterns, but their phase cycles achieved the same effect. These phase cycles are mainly

used to average out distortions in data due to T1 relaxation during the experiment.

V. RESULTS

A. Optimizing the cross-polarization signal

The first experiments I performed were to check that spin polarization did in fact diffuse

across the InP-TFMBB boundary. These experiments were done using the simple, and

prewritten, pulse program xpolar1. In the process I optimized the cross-polarized signal

with regard to the program parameters.

First, several of the parameters were assigned by the program. The phosphorus frequency

was set to 161.797 MHz, with an offset of -24536.4 Hz. The hydrogen frequency was 399.749

KHz with a -879.2 Hz offset. To see the phosphorus peak, which initially had an unknown

chemical shift, a sweep width of 100 KHz was chosen. The peak proved to be quite broad,

and this width was retained as a good scale for it’s resolution. 1024 points were taken,

corresponding to 512 real and 512 imaginary parts, giving a resolution of about 200 Hz. For

most experiments tens of thousands of repetitions were made, usually ranging from 20 000

to 100 000, depending on data quality and time constraints.

The delay time between repetitions, d1 in figure 4, needed to be chosen as much greater

than the T2 of the phosphorus, and the T1 of the hydrogen. In effect, there had to be enough

of a delay between repetitions of the pulse sequence to allow the hydrogen to return to an

equilibrium state. The other parameters were calibrated using a reference sample. As the

π/2 pulse width should not vary significantly across different molecules, phosphoserine was

used to determine that a hydrogen π/2 pulse should be about 4.4 µs. The contact time was

arbitrarially set to 2 ms. After testing a couple delay times, I chose to set it to 0.5 s. There

was no visible difference between results at 1.0 s, and 0.5 s after 100 000 repetitions. Below

0.5 s lurked the hydrogen T1, which remains unknown. Unless otherwise noted, this delay

period was constant through all of my experiments.

I then moved on to optimize the contact time. With d1 fixed at 0.5 s, I ran the xpolar1
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FIG. 4: The pulse programs used during my experiments. Xpolar1, provided by Varian, allows

simple cross-polarization. Xpbakup incorporates a pair of π/2 pulses to store spin in the phosphorus

before acquisition. Xp2 has a second cross-polarization phase to allow spin to diffuse back into the

hydrogen.
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pulse sequence with 50 000 repetitions from 3 to 27 ms, in 3 ms steps, and with 100 000

repetitions at a few smaller times. The intensity appeared to be relatively constant between

6 and 27 ms, while dropping off at lower times. Visually comparing the height of the peaks,

I chose 18 ms as the optimal contact time. Upon later analysis, this proved to be false, as

the phosphorus peak narrows at larger times, leading to a decline in signal intensity after

about 10 ms. The difference was quite small, as the slow decline of the model in figure 2

suggest.

The last parameter to be optimized was the phosphorus π/2 pulse width. With 50 000

repetitions, I checked times from 0 to 18 µs, in 1.5 µs intervals. At this point, I had not yet

developed my analysis procedures, and did not have access to reliable software. I estimated

the π/2 width by eye. As I was not able to distinguish any differences from the 4.4 µs

value suggested from phosphoserine, I continued to use that width. After fitting a Gaussian

shape to the processed data (as described in the following section), the phosphorus intensity

is plotted in figure 5. Only spin polarization in the x-y plane should diffuse under cross-

polarization, and so the signal should vary sinusoidally as the polarization vector is rotated.

Fitting the function sin(ωt) + c to the results gives a period of 18.7 µs. There is a slight

offset, as c is not 0, corresponding to about 5% of the maximum signal. This may be due

to phosposerine contamination, which will be discussed later. Using this analysis, the π/2

width is 4.7 µs. As with the contact time, the final analysis of my data shows my initial

optimization was not perfect, although it was adequate.

The sinusoidal variation in phosphorus signal, as the hydrogen spin polarization was

changed, is evidence that the observed signal must have originally come from the hydrogen.

This was my first evidence that I could measurably diffuse spin polarization across my

interface.

In these optimization experiments, magic angle spinning was used, from 3000 to 5000

Hz. However, once a strong signal had been teased out of the sample, it became apparent

that spinning did not narrow the peak. Indeed, there are theoretical reasons why magic

angle spinning might inhibit spin diffusion. The spin exchange term in the Hamiltonian 4

depends upon the term (1 − 3cos2(θij)), which is exactly 0 at the angle chosen to eliminate

dipolar broadening under magic angle spinning. Although I was never able to test whether

spinning decreased the diffusion rate, as it wasn’t obviously doing any good I discontinued

use of magic angle spinning for all experiments other than the initial optimization.
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FIG. 5: Data used to optimize the hydrogen pi/2 pulse width, with best fit sine curve.

B. Calibration and T1 measurement

I wanted to determine the rate of spin diffusion, in an absolute value of the number of

quanta of spin polarization crossing an organic-semiconductor boundary, as a function of

contact time. Since the measurements were done using NMR spectroscopy, some calibration

was necessary to determine how to translate the signal intensity into the number of polarized

nuclei.

To begin with, I needed a consistent way to measure the intensity of an NMR peak. Most

of these experiments involve very small effects, and require thousands of scans to detect a

signal from the few phosphorus which have gained polarization from the TFMBB. During

early experiments, a smaller peak began to appear near the semiconductor phosphorus signal.

It is a rather small, and often ephemeral peak, with a frequency shift above that of the InP

phosphorus (and thus appearing to the left of the InP peak). The signal was likely identified

to be residual phosphoserine, left over from the previous use of my sample tube. It has the

same frequency shift as phosphoserine (as a quick scan of an available phosphoserine sample

showed) , although the signal persisted after the tube was cleaned for the 2nd and 3rd InP
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samples. However, during experiments with varying cross-polarization times, this peak did

not change size, while the main peak varied by over an order of magnitude. This is a clear

evidence that the little peak is not related to the spin diffusion signal of interest.

However, the nearby phosphoserine contamination meant that I could not effectively find

the intensity of the InP phosphorus peak by simply integrating the signal intensity over some

frequency range. The width of the InP peak was also variable, as the chemical shift of the

surface atomic layer phosphorus is not the same as the chemical shift of phosphorus further

inside the particle. This disqualified using the maximum height as a marker. Instead, I

chose to fit to the Gaussian function,

f(x) = 1000(
I√

2πσ2
e−(x−µ)2/2σ2

+ C). (40)

Here, I is the intensity I will be reporting in the future, C is a baseline correction, and

the factor of 1000 is included to make I into a reasonably small number. The variable x

is related to the frequency shift: the entire data set covers up to a 100 KHz chemical shift

from the phosphorus resonance at 161.7725 MHz. Usually, either 256 or 512 data points

cover this range. I converted the Varian NMR data files into a usable form using XNMR, a

program that was available in my lab for analyzing Varian’s data format. I used Gnuplot v.

3.71 to do my fits.

To test the repeatability of both the raw data, and the method of characterizing it, I

repeated a simple cross-polarization experiment six times. I used the xpbakup program

using 4.4 ms π/2 pulses, 18 ms of contact time, and a 100 ms delay before acquisition.

These parameters were chosen to give me a large signal. 20000 scans were taken in each

repetition. An example of the raw data, typical of many of the experiments I performed,

is provided in figure 6, along with its Gaussian fit. The results of these six trials – the fit

values of µ, σ,I, and C – are provided in table I, along with the relative uncertainties in all

the parameters. The final row summarizes the sample error of the six measurements. We

expect the signal to noise ratio to increase as
√

I. So, to get the uncertainty of further fits I

used these relative uncertainties, weighted by the ratio
√

223.6/I, or the fit error, whichever

was greater.

Before an accurate bulk phosphorus signal could be take, I had to measure the phosphorus

T1. Based on a colleague’s research, I expected the T1 to be about 300 s [10]. To find T1, I

measured the phosphorus signal after a 4.4 ms pulse placed the phosphorus magnetization
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FIG. 6: An example of a gaussian fit to cross-polarization data, used to determine the accuracy of

the fit when comparing data sets.

into the xy plane. I took four repetitions at each of a 5, 50, 200, 400, 800 and 1600

second delay between experiments. Fitting an exponential to the data gives the T1 as 287

± 47 s. This was consistent with the expected value, and justifies the assumption that

the phosphorus signal is constant on the time scale of my cross-polarization and diffusion

experiments (from a few ms of cross polarization to, at most, 20 s of further spin diffusion).

The data is presented in figure 7.

I am now able to calibrate the scale of the phosphorus peak. I set the temperature

controller to maintain 22oC in the sample. A time delay of about 10 times the phosphorus

T1 should provide me with a fully regenerated phosphorus magnetization for every sweep.

Choosing an hour delay between each of 48 repetitions gave me a very good signal. This gave

me the peak shown in figure 8. The best fit Gaussian has I = 928.5± 5.0, µ = 48.56± 0.02

KHz, and σ = 2.72 ± 0.02 KHz. But, given the earlier test of the accuracy of this fit, these

errors are too small. In particular, we expect about a 1% error in I. The intensity, per scan,

is then 19.34 ± 0.2.
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FIG. 7: Data from the measurement of the phosphorus T1, with an exponential best fit.
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FIG. 8: Calibration data for a bulk phosphorus signal, with gaussian fit.
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Experiment I σ µ C

1 221.1 4.55 47.66 1.06

2 226.8 4.45 47.85 0.37

3 228.0 4.65 47.46 0.78

4 227.0 4.18 47.75 0.84

5 217.8 4.67 47.66 0.54

6 220.7 4.59 47.66 1.73

mean value 223.6 4.52 47.68 0.89

fit error 9.2 0.20 0.20 0.19

standard error 4.2 0.18 0.13 0.48

relative uncertainty 2% 4% 0.25% 50%

TABLE I: Comparison of gaussian fit parameters to 6 identically conducted experiments. The fit

errors represent the size of the uncertainty provided by the fitting routine output. The standard

error is the square root of the variance of the six measurements, and the relative uncertainty is the

ratio of the standard error to the mean value of a parameter.

Note that the baseline in figure 8 is not flat. In order to get a consistent measure

of the intensity, I was not able to clean up the data by cutting the first few points off

the free induction decay. Distortions in the first 2 or 3 data points of this decay, when

fourier transformed, leads to experimental artifacts in the baseline. In later experiments,

for example, the phosphorus peak often sat in a shallow valley. In experiments where I did

not need an absolute measure of the spin polarization I made the appropriate cuts to the

free induction decays, to flatten out the baseline.

To calculate the expected number of polarized phosphorus nuclei, note that phosphorus

has a spin 1/2 nucleus with a resonant frequency of 162 MHz in the spectrometer used.

Since ∆E=!f, then assuming that e∆E/kBT $ 1 − ∆E/kBT , the expected spin polarization

is
1
2(1) − 1

2(1 − ∆E/kBT )

2 − ∆E/kBT
!/atom = 6.60 · 10−6!/atom.

With a molecular mass of 145.6 g, the 0.1207 g sample used for this calibration contains

4.98 · 1020 phosphorus atoms. This gives an expected magnetization of 2.99 · 1015!. Thus,
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one unit of I, per scan, is equivalent to 1.55 ± 0.02 · 1014!.

C. Surface area measurements

1. Micrometrics ASAP 2000

Gentle reader, I have yet to inflict upon you the true horrors of surface area measurement.

Beware. I prepared 3 coated indium phosphide powders, with different surface areas. In

order to check my theoretical predictions, I need to know the surface area per unit mass of

each sample, accurate to at least an order of magnitude estimation. Further, to make valid

comparisons between my samples, I need a surface area test which can effectively discrim-

inate between them. Based on cross polarization results to be discussed in the following

section, this requires precision better than 50%.

This sounds simple, as surely some experiment can distinguish 1 m2 from 10 m2. With

nice, macroscopic, and flat surfaces, this is easy. However, with little bumpy grains of dust

the problem is not trivial. I had sole access to a Micrometrics ASAP 2000 for six weeks.

Unfortunately, there was no expert of the machine available, only another relatively new

user. Over time, I performed many surface area tests, slowly figuring out the best way to

get results. Initially, I discovered the machine can easily give wildly varying results, including

such unphysical things as negative pressures and negative surface area. Repeatability was

only possible if, in addition to strict attention to seemingly irrelevant details (the initial level

of liquid nitrogen in the dewers, the presence of a styrofoam heat shield atop the sample

tube, the delay between cooking the sample and analysis...), a great deal of luck was had.

Concentrating on analyzing the first InP sample, I tried a number of things to increase

the precision of the instrument. My results are listed, in chronological order, in figure 9.

This figure does not include runs which failed to collect any data, or which produced bla-

tantly unphysical results. Early runs found surface area by fitting a line to 5 adsorption

measurements at different pressures; I eventually raised this to 40 points hoping that better

statistics would help. They did not. I tried obsessively checking irrelevant details, to little

effect. I tried substituting argon for the analysis gas, which was initially nitrogen. This

should have lead to better results, but as experiments numbered 5 and 6 show, it did not. I

have presented one negative surface area measurement with the argon, although there were
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FIG. 9: Micrometrics surface area measurements on sample 1, labelled chronologically. Sample

mass = 0.0307 g.

more.

After switching back to nitrogen, I had time to do a few more tests before a total break-

down of the equipment. During the earliest runs, I had encountered a curious error message

of power failure. The first two, well separated, reported failures caused me some worry,

but nothing beyond questioning the stability of the power source, and asking about possi-

ble power cuts/fluctuations in the chemistry building. However, over time the frequency of

equipment power failure increased. During mid-February, while I was playing with argon

analysis, I discovered that power failure was happening most nights, and was beginning to

get used to yet another quirk of the machine. Unfortunately, failures during analysis were

never reported, just power failures while the equipment was idle. This lead me to question

the validity of the results, and careful scrutiny of the raw data showed that there were

disturbing spikes in the pressure-adsorption curves.

Before I could get much further, I actually managed to catch a power failure occur while I

was refilling the machine’s liquid nitrogen dewers. The power flickered on and off for several
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minutes, before settling down. Pumps hummed on and off, along with LED’s, and valves

closed down to prevent damage to sensitive equipment. After a few days of hesitant stability,

the power failures returned, with the equipment starting up every few seconds to be almost

instantly shut down by some problem. After several hours of tinkering with the innards of

the machine, Jerry (the other, slightly more experienced user) and I were able to trace the

problem, most likely, to either a transformer or a diffusion pump. However, at this time, I

still do not know exactly what caused the surface area equipment to break down.

A simple average of the measurements of figure 9 suggests sample 1 has a surface area

of about 6.4 m2/g. With a 0.0307 g sample, this corresponds to 0.2 m2. Unfortunately, I

managed to perform a test on an empty sample tube, which managed to record a surface

area of 0.3 m2. It seems, in other words, that the measurement cannot even see the surface

of the powder I have supplied. The one piece of information I can take from struggling with

this apparatus is a best-guess upper limit of the surface area. Based on my results here, a

surface area greater than 10 m2/g would be surprising. This is a most unsatisfactory result,

as 10 m2/g is a huge surface area, and should be a surprising result anyway.

2. Mastersizer 2000

After the failure of the Micrometers instrument, both in its ability to collect informative

data, and in its ability to work at all, I turned to other means to estimate the surface area

of my InP powders. At short notice, and with some cajoling, a lab college was able to

make some preliminary measurements on my first and second samples with a Mastersizer

2000. The first measurement was done on the 0.0307 g sample I was working with on my

surface area measurements. He had problems with the analysis, as the particle density

when suspended in water was below the machine’s stated threshold, although he was able

to get consistent results four times in a row. The best measurement of the surface area

of sample 1 is 0.305 m2/g. An error estimate on this figure is currently unavailable. The

distribution of particle size has three different peaks, suggesting that certain radius particles

went undetected. With the second sample, approximately 0.1 g was available to test, which

produced a suspension above the threshold density. The one measurement performed gave

a single peak in the particle size distribution, centered at 25 µm, and gave a surface area of

1.84 m2/g.
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The second sample should have a higher surface area than the first sample. Thus, I find

the results of these tests to be, so far, unsatisfying. They have the advantage, over the

Micrometrics tests, of actually detecting something, and supply a believable distribution of

particles sizes. For my subsequent analysis, I shall assume that the measurement of 0.3 m2/g

for sample 1 is correct, or that at least the surface area is of that order. In order to confirm

these measurements, I would like to spend some time acquainting myself further with the

test equipment. I would also like to observe the particle size distribution directly, under a

microscope. Both these options are open to future study, although I have not yet had time

to start either of them.

D. Comparative cross-polarization experiments

Spin polarization diffusion between the hydrogen surface layer and the phosphorus nuclei

has now been observed and optimized. The next thing to do is to check that the experimental

results conform to the expected behavior. Recall that the model I developed suggests that,

for short contact times, the phosphorus spin polarization should grow as

P (t) = I
√

te−2t/3T1 , (41)

where all the parameters have been measured or can be calculated. The intensity I =

Aρ(H)ε4D
π , with constants as previously defined. During the optimization experiments, it

was seen that the initial growth of phosphorus spin polarization occurred in the first 3 ms

of contact time. This provides an easy means to confirm the model.

For sample 1, with a surface area of 0.3 m2/g, a mass of 0.1207 g, at a stable room

temperature of 22oC, the phosphorus spin polarization is expected to follow

P (t) = 7.1 · 1013
√

te−2t/3T1!s−1/2. (42)

Using the pulse program xpbakup, with optimized parameters, I investigated the cross-

polarization range from 0.2 to 4 ms. I used a 0.5 s delay between cross-polarization and

acquisition. I found that such a delay sharpened the phosphorus peak, as it allowed much

of the phosphorus spin polarization to diffuse into the interior of the InP grains. As I later

show, there is noticeable chemical shift between the surface phosphorus nuclei, and those

inside the grains. 64 000 repetitions were taken at each point. The results are shown in
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figure 10 with a best fit of I = 3.7 ± 0.2· 1013 ! s−1/2, and T1 = 7.3 ± 1.4 ms. This is in

remarkable agreement with the model, considering the many assumptions built into it, and

the large uncertainty in D.

As it plateaus, the phosphorus has acquired a spin polarization of almost 1.7·1012!. The

total initial spin polarization in the hydrogen surface layer can be estimated as

P (H) = dAρ $ (4 · 10−10m)(0.3m2/g · 0.1207g)(3.8 · 1023!/m3) = 5.5 · 1012!. (43)

Here d = 4 Å is an estimated width of the hydrogen source layer. It is the same width I

used in my numerical simulation. A is the surface area of the sample, and ρ is the hydrogen

spin polarization density, as previously calculated. This calculation suggests that about

30% of the hydrogen spin polarization can enter the phosphorus. This compares well to the

observation, in my numerical model, that about a third of the hydrogen polarization was

eventually transferred into the phosphorus. It also shows that spin diffusion can transfer

significant amounts of spin polarization across the organic-semiconductor interface.

For sample 1, the hydrogen T1 is found to be only about 7 ms, and the spin polarization

is already beginning to plateau with the measurement at 4 ms. From numerical simulations,

we know that equation 41 is only suitable for the steep, initial climb of phosphorus spin

polarization. Therefore, to stay within a suitable cross-polarization time, for further exper-

iments, I decided to reduce the maximum contact times used to calculate I and T1 to only

2 ms.

With this modification, the same experiment was done with samples 2 and 3. The

results, with fits, are shown in figures 11 and 12, respectively. All three experiments are

consistent, and are summarized in table II. The value of T1ρ is, when weighted by all three

measurements, 7.8 ± .4 ms. Although the surface areas of the different samples are not

known, by taking a ratio of the intensities per gram of various samples, I can predict the

differences in surface areas. It is comforting that both sample 2 and sample 3 show larger

signals than sample 1, however the signal from sample 2 is not as large as I would expect.

That sample was subject to the most grinding, and was carefully washed, using a centrifuge

to keep the smallest particles. It should have a significantly higher intensity.

This consideration aside, these three measurements show that the model I proposed

can explain these results effectively and consistently. The spin polarization signal in the

phosphorus does, as expected, have some positive dependance on the surface area. From
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FIG. 10: Observed phosphorus spin polarization in sample 1, versus contact time.

Sample number Mass (g) Fit intensity (1012 ! s−1/2) Fit T1ρ (ms) Relative surface area (/g)

1 0.1207 37 ± 2 7.3 ± 1.4 1.00

2 0.1005 48 ± 1 8.3 ± 1.9 1.56

3 0.1857 61 ± 1 6.5 ± 0.9 1.06

TABLE II: Summary of cross-polarization experiments on three different samples. The relative

surface area is calculated by comparing the fit intensity, per gram, of a sample to that of sample 1.

this model I can confirm the rough order of the diffusion constant as calculated from either

Lowe and Gade, or Redfield and Yu.

E. Low temperature experiments

One parameter that can easily be checked in equation 38 is the dependance on the

surface hydrogen spin density, ρ(H). This should vary under changes in temperature. I
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FIG. 11: Observed phosphorus spin polarization in sample 2, versus contact time.
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FIG. 12: Observed phosphorus spin polarization in sample 3, versus contact time.
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was able to cool the sample down to -45oC, and perform an experiment on sample 1 to test

this dependance. Since we are dealing with extremely small spin polarizations, the spin

polarization density should be inversely proportional to temperature. This predicts that at

this low temperature the signal intensity should by increased by a factor of (273+22)/(273-

45) = 1.29. Although I used an identical procedure as in the previous section, I had to check

to make sure that the probe sensitivity was unaffected by the temperature change. This is

a concern, as the electrical properties of the rf coil are temperature dependant. To check

how the coil would give, and receive, rf fields, I performed one of the calibration routines

already discussed. With the same settings I used to generate figure 5, discussed in the

optimization section, I checked the response of the cross polarization signal as the π/2 pulse

was varied between 0 and 16 ms. The π/2 pulse width, at -45oC, is 4.5 ± 0.1 ms. This is not

necessarily inconsistent with the room temperature measurement of 4.7 ± 0.1 ms, although

it does suggest that the rf sensitivity may increase slightly as temperature decreases. If there

is an increase in sensitivity, it would tend to increase the signal at low temperatures.

So, I took 64000 repetitions of 8 different contact times, as I did at room temperature,

using the same 4.4 ms π/2 pulse (as there was no clear reason to change this, I left it as

before). The data is, again, well described by equation 41. A gnuplot best fit, shown in

figure 13, gives the values of I and T1ρ as 5.05 ± 0.07 · 1013 ! s−1/2 and 7.5 ± 0.9 ms,

respectively. This is an increase of 36 ± 7%, in agreement with the 29 % predicted increase.

This may also indicate a possible signal enhancement from the rf coil itself. The value of

T1ρ is also consistent with that already found.

F. Longer contact time experiments

As I discussed in the theory chapter, the model I have been using is limited in accuracy to

a few ms of contact time. A numerical model, that can be calculated given the measurements

of I and T1ρ, is presumed to better describe the evolution of the phosphorus spin polarization

over contact times greater than T1ρ. To check this, I extended my original experiments on

sample 3 to include contact times up to 50 ms. Not surprisingly, I found that the simple

decaying source model I have been using is inadequate. But, more curiously, although the

behavior of the phosphorus spin polarization signal follows the form of my numerical model,

there is significantly more spin polarization than should be accounted for.
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FIG. 13: Observed phosphorus spin polarization in sample 1, at low temperatures (T = -45oC),

versus contact time.

Figure 14 shows the results of my experiment, which also includes the relevant data for

contact times below 2 ms, as previously measured, along with different model predictions.

The numerical model, using T1ρ = 7.8 ms, an intensity of 6.1 · 1013 ! s−1/2, and the presumed

diffusion constant of D=3·10−17 m2/s is a much better fit than the that of equation 41, but

it is still very far from the data. I found that, by dropping D down to 5·10−18 m2/s, I was

able to get a significantly better fit. This fit still inadequately describes the decay of the

phosphorus spin polarization. It also produces inconsistencies with my other results that

confirm the size of the calculated diffusion constant. The fit has a reasonable shape, and

shadows the decline of spin polarization quite effectively, but it still does not match the

intensity.

The best solution may lie with toying with the other parameters in my numerical simula-

tion. I found that my step sizes in the simulation are bordering on a critical size. If I increase

D, ∆t or ∆x by even a factor of 3, the simulation breaks down, giving either negative or

extremely large values of spin polarization. However, I am already working at the limit of
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my computing abilities – Excel is already very slow at calculating the model, and gave me

memory errors when I trebled the number of active cells. It may be that, just by decreasing

the time and space step sizes, I may converge to a nicer fit. An alternative may be that

more hydrogen contributes to the surface spin reservoir than just those in TFMBB directly

attached to the InP grain. A layer of TFMBB a couple of molecules thick could increase the

width of the hydrogen source. This would increase the amount of spin polarization flowing

into the InP grain. I have not been able to fully investigate all of these possibilities.

One remaining possibility to explain these data lies in my assumption that spin diffusion

is totally isotropic. I will show in my next experiment that the chemical shift of phosphorus

in the surface atomic layer is a couple of KHz lower than the chemical shift of phosphorus

inside the InP grains. As such, there will be a small energy difference between an oriented

phosphorus spin in the surface layer, and an oriented phosphorus spin elsewhere in the

InP grain. Thus, there could be a small effect that tends to inhibit spin diffusion back

to the surface, once spin polarization has passed through the surface atomic layer. Even

a slight inhibition would mean the phosphorus spin polarization would persist longer than

predicted. This may explain the differences in spin polarization decays between my models

and experiments.

The results of this experiment show that my modelling is on the right track for long

contact times, although further refinement may be necessary to fully describe the situation.

Considering that any of the presented curves are extrapolations to 50 ms, based on the

initial 2 ms of data, the fact that they have any resemblance to the data does indicate that

something is right with my model of the experiment.

G. Spin diffusion after cross-polarization

In several of my experiments I used a short delay between cross polarization and acqui-

sition, to enhance my signal to noise ratio. During such a delay, the spin polarization of

the phosphorus is allowed to diffuse inwards, into a region of homogenous chemical shift.

Without a delay, the spin polarization is almost entirely in the surface atomic layer of the

InP grains, whose NMR spectrum has a broad linewidth. In a series of experiments, varying

the delay time in the xpbakup pulse program, I investigated the qualitative aspects of this

broadening, and discovered a time dependant chemical shift does indeed indicate that the
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FIG. 14: Phosphorus spin polarization, as measured in sample 3 for long contact times. The dashed

line is the prediction of equation 41. The dotted line is the prediction of the numerical simulation

with D=3·10−17 m2/s. The solid line is the same model, with D=5·10−18 m2/s.

surface layer of phosphorus feels a very different, and much more varied, chemical shift than

the phosphorus inside the grain. Indeed, one would expect that the surface atoms can see

a wide variety of environments, from being adjacent to a hydrogen atom, to being several

angstroms away from any.

Using 64000 trials, and otherwise optimized conditions, I measured the phosphorus signal

in sample 1, with delays (parameter d3) from 0.01 s to 1.0 s, using the xpbakup program.

I fit Gaussian peaks to the results, using Gnuplot, and have graphed the resulting fits in

figure 15. One may notice several things from this graph. First, the width of the peaks

shrinks as longer delays are included. Secondly, to conserve the area under the curve, and

hence the total phosphorus spin polarization, the peaks grow taller as they decrease in

width. Next, the chemical shift increases with longer delay times. I have shown this more

clearly in figure 16, where the shift is explicitly graphed against the delay. I expect the

phosphorus spin polarization to diffuse, on average, a distance
√

4Dt/π, as described in my
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FIG. 15: Phosphorus spin polarization with delays before acquisition. Fits for d3 = 0.01, 0.1, 0.2,

0.3, 0.5, and 1.0 s, in ascending order of maximum intensity.

first model. If the average interatomic spacing is 3.7 Å, and D = 3·10−17 m2/s, then it will

take an average of 36 ms for spin polarization to diffuse out of the surface layer. This sets

the timescale for the motion of the chemical shift. Looking at figure 16, it is apparent that

about half of the change in chemical shift occurs in the first 100 ms, which is in reasonable

agreement with what could be expected. Lastly, note that the left shoulder of all the fits,

save that of the shortest time, are roughly the same, while the right shoulders are not. This

is further evidence that most of the line broadening due to surface conditions lowers the

chemical shift of the phosphorus.

To take this experiment further would have been interesting, but to extract quantitative

results from it would require making substantial assumptions about the behavior of the

chemical shift as a function of distance into the InP grain. As a continuation of my work,

this experiment may offer the potential to measure the spin diffusion constant D.
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FIG. 16: Chemical shift of phosphorus signal as a function of acquisition delay.

H. Double contact experiments

The next experiment I did involved using the xp2 pulse program to move spin polarization

from the hydrogen into the phosphorus, wait, and then return the spin polarization to the

hydrogen. I used otherwise optimized conditions, but only allowed a 1 ms contact time for

each cross-polarization phase. This allowed only a small amount of spin polarization into

the phosphorus, which could then be treated as a point source for subsequent diffusion.

The short cross-polarization returning spin polarization into the hydrogen was chosen to

neglect relaxation effects, and to simply sample the surface spin polarization density of the

phosphorus. I took data over several orders of magnitude of the delay, d3, during which

phosphorus spin diffusion occurred. In my first experiment, I ran 32000 repetitions over the

scale of 50 µs to 0.5 s. There was only interesting data in the last few data points, so I made

two further attempts, going up to 3 s, to extend the range of data. Due to time constraints,

I was only able to do 20000 repetitions of these long delay experiments. This led to very

poor signal to noise ratios. Unfortunately, a key point, lying at 1.33 s, turned out to be

unresolvable, although I managed to extract poor fits to a few longer delays.
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I have been unable to find a reasonable explanation for these data, which are graphed in

a log-log format in figure 17. The intuitive guess would figure that the spin polarization

of the phosphorus would, for diffusion time scales longer than the initial cross-polarization,

resemble a slowly expanding gaussian shape. This should have the spin polarization density

at x = 0 as inversely proportional to its width,
√

4Dt/π. Thus, I would naively have expected

that the hydrogen spin polarization should vary as t−1/2, at least for diffusion times of greater

than a few ms. This does not seem to be the case. I should reiterate a precaution I made

when I presented my spin diffusion models – the assumptions behind my models are not

appropriate for diffusion from a phosphorus source into an initially unpolarized hydrogen

layer. Indeed, my attempted fits to variations of t−1/2 are all very poor. I have plotted the

data in a log-log format in order to attempt to bring light to the order of the dependence of

the hydrogen signal to the delay d3. The signal intensity is roughly constant up till almost

half a second, after which time it sharply declines. Based on the last three points, the data

seem to fall with a slope of -2, implying a behavior asymptotic to t−2. But, these data are

not complete enough to clearly show the intermediate behavior. Also, this is a much more

complicated experiment than I have been previously working with. As such, my analysis

of this experiment will remain incomplete. More data, and some further refinement of my

modelling of what’s really going on is necessary.

It is comforting to note, however, that the timescale of the signal decay is about 0.1 to

1 s. This is in agreement with the previous experiment, that used chemical shifts to show

that spin polarization moves away from the surface on a timescale of 0.1 to 1 seconds.

I. Direct hydrogen T1ρ measurement

Finally, I was able to use the flow of spin polarization to directly measure the hydrogen

T1ρ, a parameter that was previously extracted from my cross-polarization experiments as

7.8 ± .4 ms. I slightly modified the xpolar1 pulse program to include a hydrogen spin lock

period before cross-polarization. I then allowed a brief, 1 ms cross-polarization to sample

the hydrogen spin density at that time. I took 5 data points, from 1 to 20 ms of spin lock,

with only 16000 repetitions at each point. The signal intensity is shown in figure 18. An

exponential decay was fit to the data, giving the value of T1ρ as 11.0 ± 1.2 ms. This is

similar to the measurement extracted from my other cross polarization experiments, but
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FIG. 17: Hydrogen signal intensity, as a function of delay time d3, on a loglog scale.

anomalously high.

The previous measurement was based on a model assuming the hydrogen spin density

decays only via T1ρ relaxation. However, in reality, there is a drain on the hydrogen spin

density through spin diffusion into the phosphorus. This will speed up the rate at which

the hydrogen spin density decays. Since I neglected this effect, in order to make my model

soluble, a fit to this model will measure a decay rate that includes both T1ρ relaxation, and

the spin diffusion contribution. This will lead to an underestimation of the T1ρ relaxation

time. Considering that up to one third of the hydrogen polarization may be transferred into

the phosphorus, this underestimation could be significant enough to find my two different

measurements of T1ρ in agreement.

VI. CONCLUSIONS

My proposed aim in observing, and quantifying the phenomena of spin diffusion between

an organic molecule tightly bound to the semiconductor indium phosphide. I proposed a

number of models, using basic assumptions, that attempt to describe what happens when
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FIG. 18: Decay of hydrogen spin polarization by T1ρ relaxation in a spin lock field.

spin polarization flows from a surface source into a deep sink. These models, and consider-

ations on the assumptions underlying them, may serve as a starting point for future work

with optically enhanced spin polarizations.

In a series of experiments, I was able to optimize the Hartmann-Hahn cross-polarization

condition, and calibrate the NMR probe to determine the absolute number of polarized

nuclei in my sample. This calibration allowed me to check a number of predictions of

my models. In simple situations, for short times, these predictions were found to agree

splendidly with the data. In experiments where one, or more, of the basic assumptions

behind my models were challenged, the behavior differed from these models. However,

the manner in which data diverged from strained predictions may say something about

certain parameters. In particular, while short contact time data is consistent with the

theoretical prediction of the diffusion constant in InP, namely D = 3·10−17 m2/s, longer

contacts suggested that D may be overestimated. However, the timescale set by observations

of spin polarization moving away from the phosphorus surface layer are strong evidence that

the calculated value of D is correct. Also, the decay of spin polarization in a spin locked field
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undergoing cross-polarization was found to decay via a slightly modified T1ρ. Finally, ε a

fudge factor I introduced to describe the resistance of the organic-semiconductor interface to

spin polarization under cross-polarization conditions, was found to be consistent with unity.

This implies that spin polarization flows freely across the boundary, at least for tightly

bound molecules. Indeed, a simple approximation suggests that up to a third of the initial

hydrogen spin polarization eventually ends up in the phosphorus.

A number of other effects were observed within the study of cross-polarized samples, all

of which are consistent with the qualitative understanding of the physical system. As spin

polarization diffuses away from the surface, it undergoes a slight variation in chemical shift,

and it finds the inner atoms of an InP grain to be more homogeneous than the outermost

atomic layer. The cross-polarization signal intensity was found to increase with an increased

initial hydrogen spin polarization density, and with increased surface area.

All these things suggest that future work in spin diffusion will have a successful base to

build upon. This phenomena is observed to occur predicably, and efficiently enough to be

of use when developing techniques for NMR signal enhancement through cross-polarization

and optical pumping.
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