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I. PREFACE

This thesis presents a collection of my research work over the past six years, largely

drawn from my contributions since starting a position as a research group leader at the

Max Planck Institute for Dynamics and Self-Organization, in Göttingen, Germany, in 2011.

As a forward to a cumulative thesis, a general introduction to my work is followed by a

number of short sections where the common motivation, physical models and ideas behind

my approach to elasticity and multi-phase flow are provided. The collected works are then

briefly summarised, and set into context.

The majority of this thesis is a collection of my published works, which relate to my

research into a variety of elastic instabilities in multiphase materials. This consists of thirteen

peer-reviewed papers [1–13] including three single-authored pieces, and two invited opinion

articles. In all but two papers, I am primary author (first/last authorship). For the two

works included where I am a secondary author, I contributed to the work of the droplet-

stress experiments on colloids of di↵erent sizes [7], and the neutron scattering aspects of a

study of the mechanisms for locomotion of self-propelled emulsion droplets [12].

Rather than including my works in chronological order, they are instead arranged themat-

ically. First, I include the two opinion pieces, one written on the request of Physics Today,

the monthly trade journal of the American Institute of Physics, the other prepared while

acting as special editor for a theme issue of the Philosophical Transactions of the Royal Soci-

ety A, the world’s oldest peer-reviewed scientific journal. These introduce a major research

focus for me – how geological patterns can be modelled in a physics lab, through the use

of analogue experiments. They are therefore followed by three pieces which put these ideas

into practice, and where I present work on permafrost patterns, evolving crack networks,

and enigmatic fossil wrinkle-structures. From here, I turn to looking at fracture from a

more fundamental perspective, and include three further papers which discuss the origins of

crack patterns in drying films. Next, I present my work on structure formation in colloidal

dispersions. These papers discuss the ordering and disordering of colloidal particles, as they

pass from a liquid-like state, to a solid-like state. Finally, two further papers apply some of

the above methods in other areas, of self-propelled particles, and cracking starch.

Furthermore, over the past year I have had the opportunity to coauthor a specialist

textbook on Desiccation Fracture and its Patterns [14], contributing both the general in-

troduction chapters of this book (roughly, the first half), and to certain special topics re-

lated to my area of research. As such, certain of the more didactic material (in partic-

ular, Sections II and IV) of the introduction of this thesis draw on the text I wrote for

this book. For the purposes of inspection, a proof of this book can be downloaded from

https://www.dropbox.com/s/jun9wlgpl567zl4/Goehring book preprint.pdf?dl=0. The au-

thor contributions are clearly identified in the preface to that work, and I use material here

only from the text which I was responsible for writing.
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II. MOTIVATION: WHY STUDY CRACKING MUD AND DRYING PAINT?

What do a broken-up mud puddle, patterned ground on Mars, and the scales on a Nile

crocodile have in common? They are all examples of ordered patterns of cracks, as demon-

strated in Fig. 1. Understanding how such patterns form can impact many disparate fields,

such as also plant biology (leaf vein development is thought to be possibly initiated by a

crack-like instability [15, 16]) and forensics (cracks in dried blood splatter can reveal con-

ditions at the time of death [17, 18]). Further, the ability to control crack formation is

important for engineering applications, such as customising novel surfaces [19].

Drying mud occupies a central place to this work. Why mud? Why drying? This is not

simply whimsy, but rather reflects the value of desiccation fracture as a simple reliable model

for investigating fracture patterns in general. Contraction cracks may be the result of many

distinct processes: drying, cooling, syneresis, stretching of a substrate, or di↵erential growth

of biological tissue, to give a few examples. However, to a large degree, once the geometry

and stress state of a system is set one does not need to know which of these is the driving

force, in order to understand the resulting crack patterns. For the particular cases of drying

and cooling the connection is even stronger, as there is an exact mathematical analogy

between the flow and action of heat and moisture in elastic systems [21, 22]. Moisture is

often easier to work with, especially when extreme temperatures are involved. Finally, the

250 m
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a

FIG. 1: Mud cracks in Death Valley (courtesy of B. Hallet), permafrost patterns on Mars (Copy-
right NASA/JPL/Malin Space Science Systems), and the head scales of a Nile Crocodile (courtesy
of M. Milinkovitch, [20]). Figure adapted from [1].
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claypaint starch

blood

silica

soil

FIG. 2: Examples of desiccation cracking in di↵erent media, and under di↵erent conditions. Des-
iccation crack patterns are very rich, and can show spirals, stripes, polygons, waves, and columns,
for example. Blood droplet image courtesy of David Fairhurst; paint craquelure image courtesy of
Ludovic Pauchard. Figure adapted from [14].

types of patterns that can be found are very rich, and a few example of these are shown in

Fig. 2.

A practical approach to studying desiccation cracks can also be useful in two very di↵erent

ways, either to prevent cracks, or to make use of them. The objective may be to prevent

cracks, which is the more traditional objective. But the scientist may also work in a positive

sense to produce specific crack patterns for technological applications or to use cracks as a

diagnostic tool that gives information about the composition of the cracking material, or

ambient conditions which caused cracks. Some demonstrated applications of the study of

desiccation fracture include:

• Industrial coatings. There is a great interest in replacing paint solvents with envi-

ronmentally friendly alternatives. These often lead to an increased tendency to crack,

during drying, and much work has attempted to prevent this (see e.g. a recent review

in [23]). Other industrial applications involve the colloidal films that are used as coat-

ings on papers, for ink-jet printing, and for modern high-performance ceramics (e.g.

turbine blades in jet engines).

• Photonics. The manufacture of colloidal crystals, artificial opals, and photonic ma-

terials often involves the preparation of a desired structure which is dispersed in fluid,

and the fixing of this structure by drying it out. Desiccation cracking is a notorious

problem which limits the size of many photonic devices [24–26].
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• Geophysics. Analogue experiments in geology can allow quantitative access to phe-

nomena which occurred long ago in the Earth’s past, on other planets, or over time-

scales inaccessible to humans. For example, dried starch columns are exact analogues

of the columnar jointing of lava [27, 28], while the cracks that form in mud as it is re-

peatedly wetted and dried can help describe the millennia-long evolution of polygonal

terrain in permafrost [4, 5].

• Biophysical fracture. Insight from desiccation crack networks has been applied to

show that the head scales of the Nile Crocodile develop as a fracture pattern [20],

and to explain the ridges on the skin of cantaloupe [29]. There is also a now long-

standing question as to whether leaf venation patterns are equivalent to desiccation

crack patterns [15].

• Bespoke crack patterns. Recently it has been suggested that desiccation cracks and

patterns may be used as templates for nano-patterning. The memory e↵ect in pastes,

whereby a gentle vibration of the paste prior to drying can determine the orientation

of the dried crack pattern [30]. Evaporative lithography can also be used to produce

textured surfaces by locally varying the drying rate over a colloidal film [31, 32].

• Forensics and Medicine The pattern of cracks in dried blood droplets can be used

in the diagnosis of illness [33], or to determine the time and conditions (temperature,

relative humidity) at which the blood was spilled, for example in a homicide inves-

tigation [17]. Additionally, the craquelure pattern in paintings can be used to help

determine authenticity, and authorship [34].

Desiccation fracture also allows a probe into the mechanical response of soft materials.

Colloids, clays, and polymer films are all relatively complex mixtures. They are very far

from the traditional topics of engineering, or materials science, where fracture mechanics was

initially developed. Their behaviour also changes from fluid-like to solid-like as they dry,

often very rapidly (e.g. gelation, aggregation, crystallisation). Many of the topics that I will

discuss try to make a connection between the micro-scale physics of interactions between

the individual particles in a solid, and the macroscopic behaviour of that solid as it dries

and breaks. A few examples are shown in Fig. 3. As the physics of the micro-scale is, for

such materials, intermediate between granular and atomic length scales, new concepts often

need to be developed in order to make this connection possible.

III. OVERVIEW

Superficially, I study what happens as paint dries, and mud cracks. Colloids, clays, gels

and polymer solutions belong to a class of soft materials that are composed of more than one

phase of matter, mixed together in a potentially complex arrangement. The properties and

4



Elasticity, multi-phase flow and geophysical pattern formation L.Goehring

MacroMicro

FIG. 3: Drying dynamics from the micro-scale to the macro-scale, and the connection between
structure and fracture. In the top row images focus on structural information. From left to
right: an atomic force micrograph of dried colloidal spheres; a microscope image of a directionally
drying colloidal dispersion, where colour changes reflect changes in structure [9]; and a digital
photograph through crossed polarisers showing the pattern of birefringence in a dry film, resulting
from anisotropy in the structure [11, 35]. The lower row focuses on the connection to fracture.
From left to right: atomic force micrograph of a crack tearing through a drying colloidal film, and
causing structural damage [8]; wavy cracks which follow the direction of the drying shown above
[6]; and curved cracks which are guided by a structural memory in a paste, induced by vibration
prior to drying (panel copyright of A. Nakahara) [30]. Adapted from [14].

dynamics of such mixtures depend intimately on the physics of its di↵erent parts, which may

consist of a solid-like phase, and a liquid-like phase, and their interactions. More formally,

my research looks into a number of instabilities and questions involving elasticity and multi-

phase flow in such soft materials. These questions are interdisciplinary, and often take some

inspiration from patterns that we can see directly around us, mostly from geological settings.

However, some of the questions that have sprung from these origins also involve a mixture

of soft matter physics with chemistry, materials science, and biology. What unifies these

topics are the methods used – models constructed of strict mass, momentum, and energy

balance of the various interacting parts – and the types of fundamental questions asked,

which involve the relationship between microscopic dynamics and macroscopic response, as
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well as an attempt to understand the types of instabilities that can develop. This thesis

summarises my work, over the past six years, of experimental research in this field. Some

highlights include:

• The use of sheared polymers to understand the scaling and formation of billion-year

old fossil wrinkle structures, which have been a century-old mystery to science [3].

• Modelling of the vast polygonal permafrost patterns of polar Earth and Mars with the

cyclic drying of clay in a Petri dish [4, 5].

• The discovery of wavy cracks in thin colloidal films and their use in developing an

energy-based model for crack path prediction [6].

• Identification of plastic relaxation mechanisms that can toughen a paint film when,

counter-intuitively, the adhesion between its constituent particles is weakened [8].

• Finding a general route of solidification from disordered liquid, to ordered repulsive

solid, to an attractive hard solid, as charged colloids dry [9–11].

Although these results are diverse the work here all focusses on the mechanical interactions

and responses of multi-phase materials. In the work collected in this thesis three main topics

emerge. The first involves the application of laboratory techniques to geophysical problems

of pattern formation, where the inhuman timescales or distances involve can make direct

field verification of ideas di�cult, or impossible. Much of this work, including my earlier

studies on columnar joints (which are not included here) turn on fundamental questions of

crack growth and propagation in brittle materials. From this, I became interested in the

question of how to predict the behaviour of a growing crack, or how a crack interacts with

other nearby cracks or an uneven environment. This serves as the second main topic here

– the physics of crack interaction and growth in brittle thin films. Or, simply put, how

do you predict the path that a crack will take? Finally, as these cracks are driven by the

evaporation of water from soft materials, I became interested in the basic problem of how

a multi-phase material dries, and solidifies. This has lead to a series of studies on structure

formation and the dynamics of drying in soils and colloidal materials (such as the precursors

of latex paints).

IV. AN INTRODUCTION TO MULTI-PHASE FLOW

There is an intuitive definition of liquids and solids. Liquids flow, solids do not. In formal

terms liquids do not have a shear modulus, at least in the long-time limit. However, a drying

material like paint contains at least two phases: an evaporating liquid, and a particulate

solid. It can share the properties of both. Indeed, much of the interesting behaviour of

drying lies on the interface between liquid-like, and solid-like responses. This can lead to
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birefringence in drying colloids [11, 36], or a memory e↵ect that guides crack paths [30],

for example. More complex situations may involve the percolation of two immiscible fluids,

the presence of a dissolved salt in the liquid phase, reactive flow, or heterogeneity in the

solid phase. As each phase can transmit stress, and responds to it di↵erently, the physics

of deformation of a multi-phase system can be considerably more complicated than either

that of a simple elastic solid, or a liquid.

In 1941 Biot proposed a theory of how to combine the responses of the fluid and solid

phases of a rigid porous body [37]. This theory notes that forces can be transmitted by

both a liquid pressure, and by stresses in the solid skeleton of the body. The thermody-

namically relevant quantity, the total stress, must therefore be the sum of these respective

contributions. This perspective can be formalised in a mass and force balance of multi-phase

systems, as the theory of linear poroelasticity. Starting instead from a fluid-like perspective,

Kynch first suggested a quantitative theory of sedimentation in 1952 [38]. It balanced hy-

drodynamic drag of a fluid against the gravitational acceleration of sedimenting particles.

This notably explained why there can be a shock front in a settling sediment – such as the

abrupt line seen in the concentration of cocoa in hot chocolate that has sat for a few minutes.

Within the last decade these two limits have been unified in a more general theory of the

solid-liquid transition of multi-phase materials. Work on this has progressed from di↵erent

perspectives, such as solidification by drying [9–11, 23], freezing [39–41], and filtration [42].

All these diverse phenomena can be captured by considering mass and momentum balances

of mixed solid and liquid phases, and the manner in which momentum transfer occurs

between phases, through drag. As a short demonstration of these models I will show here

that from a mass and momentum balance of the two phases one can derive the Brownian

motion of isolated particles in one limit, and Darcy’s law of porous medium flow in another.

To begin we need to define the relevant stresses and pressures.

The simplest situation is that of a liquid solution or dispersion, containing a sol-

vent/dispersant and a solute/dispersed phase, respectively. The presentation here will be

restricted to a mixture such as paint or a clay slurry, composed of small solid particles and

a simple liquid, although the ideas can be developed more generally (see e.g. [39, 43]). This

is, essentially, a modern form of the sedimentation theory begun by Kynch [38].

Start with a glass containing a two-phase fluid of solid particles dispersed in water. The

thermodynamic pressure, P , of the mixture may be defined as the isothermal derivative of

the system’s free energy, UF , with respect to its volume V ,

P =

✓
@UF

@V

◆

Ni,T

(1)

at constant particle number Ni for each phase i. This can be derived from a thermodynamic

potential, and reflects the fact that pressure and volume (or their tensorial generalisations,

stress and strain), are thermodynamic conjugate variables. Here P is simply the pressure
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Fd = − 6πηa(vs − v )

f (φ)

Fd

p(x + Δx)

h ~ p

P = p +Π

FIG. 4: (a) For a mixture of solid particles dispersed in a liquid, the thermodynamic pressure P
of the bulk mixture can be broken down into the sum of the osmotic pressure ⇧ of the solid phase,
and the fluid pressure p of the liquid phase. The osmotic pressure can be thought of as the force
per unit area of the randomly moving particles bouncing o↵ the walls of a container, while the fluid
pressure can be measured by the relative height of a column of pure fluid which is able to exchange
fluid molecules with the mixture. (b) If the fluid and particles are moving with respect to each
other, the particles feel Stokes drag. On a microscopic scale, there must be a balance between the
drag forces felt on all the particles in a volume element, and the change in fluid pressure across
that element. Reproduced from [14].

felt on the walls of the glass, or an internal area element.

The particles, or dispersed phase, can exert a very di↵erent pressure from P , when con-

sidered alone. The dispersed particles are thermally active. They randomly hit the walls of

the glass with an osmotic pressure ⇧, as sketched in Fig. 4(a). If the particles are simply

an ideal gas of non-interacting points then

⇧ = nkBT (2)

where kB is Boltzmann’s constant, T is the temperature and n is the number density of

particles. Note that it is often more convenient to work with the solid volume fraction

� = V0n, rather than the number density, where V0 is the average volume of any particle.

In a real dispersion the osmotic pressure tends to be higher than that of an ideal gas,

and the e↵ects of particle interactions can be included by defining a compressibility factor

Z(�), such that

⇧ =
�

V0
kBTZ(�). (3)

For stable dispersions the osmotic pressure must increase monotonically with �. This is

equivalent to saying that the bulk modulus associated with the solid phase must be positive.

The water, or continuous phase, in the mixture also has its own fluid pressure p (sometimes

called the pervadic pressure [39, 40]) which can be measured by a manometer. Such a device

can be as simple as a long tube attached to the system by a membrane which is water-

permeable, but which blocks the particles, as sketched in Fig. 4(a). The height h of pure
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fluid that can be supported in this column, relative to the height of the mixed fluid in

the glass, is proportional to p. If ⇢l is the density of the liquid, and g is the acceleration

due to gravity, then equating the fluid pressure at the air-fluid interfaces in the glass and

manometer gives us p = ⇢lgh.

Since ⇧ and p are the relative pressures of each phase, which can act on an arbitrary

surface in or bounding the dispersion, the thermodynamic pressure P of their mixture is

P = p+ ⇧. (4)

This pressure can also be called the total pressure. In the example of the glass full of

dispersion there was no bulk flow, and hence P was in hydrostatic equilibrium. However, the

two phases may still be in motion with respect to each other, for example by sedimentation

of the solid phase. If so, the relative motion will cause drag on the particles, transferring

momentum from one phase to the other.

The classic example of drag is the case of an isolated sphere of radius a falling at a velocity

vs in a liquid of dynamic viscosity ⌘, with no walls anywhere. The particle experiences a

Stokes drag force

Fd = �6⇡⌘avs. (5)

This can be derived by integrating the fluid pressure felt over the surface of the particle in

the viscous limit, assuming a no-slip boundary condition on its surface (see e.g. [44]). In

the case of particles of other shapes it is customary to use the same formula, using it instead

to define a as the e↵ective hydrodynamic radius of the particle.

Now consider a collection of particles, of volume fraction �, moving on average at a speed

vs, in a dispersion where one also allows for a bulk, or mean, velocity v̄. If we distinguish

between vs and an average velocity vl of the fluid phase, then for an incompressible fluid the

di↵erent velocities are related by a mass conservation law,

v̄ = �vs + (1 � �)vl. (6)

Since there are now many nearby particles, their mutual hydrodynamic interactions can

increase the total drag forces. In this case Stokes drag can be generalised by introducing a

dimensionless mobility f(�) [39, 40], such that

Fd(�) = �6⇡⌘a(vs � v)

f(�)
. (7)

The inverse of the mobility is sometimes used for this purpose, and referred to as the hindered

settling coe�cient [45] or the sedimentation factor [44].

The drag forces on the particles come from interaction with the fluid phase. In the viscous

limit that is appropriate for small particles (and small Reynolds numbers) inertial e↵ects

9
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can safely be neglected. A microscopic force balance can thus be made on a small volume

element, as shown in 4(b). This involves equating gradients in the fluid pressure, p, with

the total drag forces applied to the particles, and any body forces Fl acting on the liquid.

Given an average drag Fd per particle,

rp = �nFd + Fl =
6⇡⌘�a(vs � v)

f(�)V0
+ Fl. (8)

As an example of a body force, one could include the e↵ects of gravity by setting Fl = �⇢lgẑ,

where ⇢l is the density of the liquid phase.

The evolution of the osmotic pressure must balance that of the fluid pressure, such that

r⇧ = nFd + Fs = �6⇡⌘�a(vs � v)

f(�)V0
+ Fs, (9)

where Fs represents any body forces felt by the solid phase. For example, the e↵ects of

buoyancy could be included by setting Fs = ��g(⇢s � ⇢l)ẑ, where ⇢s is the density of the

solid phase. The e↵ects of electromagnetic fields could also be introduced as a body force

on the solid phase. We can now put all of this back into the global momentum balance and

end up with a model of how the two phases couple. Starting with Eq. (4), the gradient of

this total pressure can be balanced by any body forces, F = Fs + Fl, felt in the mixture.

One could in principle include inertial terms as well, but they are usually negligible for

small-enough particles. As such, one finds that

rP = rp+ r⇧ = F. (10)

The body forces may be simply due to gravity, in which case F = �⇢gẑ where ⇢ = (1 �
�)⇢l + �⇢s. However, since many clays and colloids contain charged particles, electric and

magnetic fields can also have interesting e↵ects (see e.g. [46–48] for their influence on crack

patterns). For the remaining discussion here it is assumed, however, that there are no

significant external forces. Using Eqns. (3) and (8) for the osmotic and fluid pressures,

respectively, one then finds that

�(vs � v̄) +
f(�)kBT

6⇡⌘a
r(�Z(�)) = 0. (11)

This is a force balance equation which describes how the solid volume fraction evolves,

without reference to the various pressures in the mixture. Combined with Eq. (6), and the

continuity equations for the solid phase,

@�

@t

= � @

@x

�
�vs

�
(12)
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and the liquid phase
@(1 � �)

@t

= � @

@x

�
(1 � �)vl

�
(13)

it gives a closed system of equations which can describe two-phase flow in a mixture of

solid and liquid components. This is not a particularly transparent result, and can be

highly nonlinear, so we will next look at how it reduces to more familiar behaviour in two

appropriate limits.

A. Liquid-like limit: Fick’s laws

If there is no net flow (i.e. v̄ = 0), no body forces, but a concentration gradient in �,

then Eq. (11) predicts that the solid particles will move di↵usively. Making use of the chain

rule, r(�Z) = (@�Z/@�)r�, gives the solid volume flux

�vs = �D(�)r� (14)

for a di↵usivity D(�). This is Fick’s first law of di↵usion, which says that the mass flux of

a di↵using material is proportional to its concentration gradient. By introducing this result

into the solid mass conservation law, Eq. (12), one finds a concentration di↵usion equation

@�

@t

= r ·
�
D(�)r�

�
. (15)

This is Fick’s second law of di↵usion. However, the multi-phase flow model also predicts a

value for the concentration di↵usivity,

D(�) =
f(�)kBT

6⇡⌘a

@(�Z(�))

@�

. (16)

This reduces to the case of the Stokes-Einstein di↵usivity, D0 = kBT/6⇡⌘a, in the dilute

limit where f = Z = 1.

B. Rigid-body limit: Darcy’s law

In the case where the solid phase is stationary, vs = 0, for example in a filter cake,

sediment layer or porous rock, then Eq. (8) simplifies to Darcy’s law

rp = �⌘



v̄. (17)

In this context, v̄ is often called the superficial fluid velocity (volume flux per unit area),

and p is usually called the pore pressure. The resistance of the porous body to flow is given

by the permeability . This model, for spherical particles where V0 = (4/3)⇡a3, makes a

11
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prediction for the permeability of

 =
2a2

f(�)

9�
. (18)

While this has the correct scaling (which can be estimated simply on dimensional grounds),

there are more sophisticated models of the permeability, such as the Carman-Kozeny equa-

tion [49–51], which better account for the complex geometry of a dense pore space. Darcy’s

law describes the pressure drop of a fluid passing through a porous medium, due to the drag

felt on the solid-liquid interfaces. There will, naturally, also be a counter-force that needs

to be supported by the rigid skeleton of the porous medium.

C. Network and total stress

The preceding material has explored flow in a multi-phase material composed of a solid

phase, and a liquid phase. By breaking the thermodynamic pressure P into separate com-

ponents for each phase a general model was sketched that is consistent with both Fick’s

laws of di↵usion, and Darcy’s law, and which predicts what the di↵usivity and permeabil-

ity appropriate for each situation are. However, so far shear forces have been neglected.

The mixture has also been treated as an incompressible fluid, as appropriate for many dis-

persions, emulsions, or solutions, at least in the dilute limit. When the pressures involved

become large enough the elastic response of the component materials can become impor-

tant. Furthermore, if the solid phase becomes concentrated enough to form a connected

network, it can also transmit stress non-isotropically. This need not require particularly

high volume fractions: Laponite clay, for example, consists of platelets that gel into a rigid

‘house-of-cards’ structure at solid volume fractions of only a few percent [52].

In order to include solid-like responses of the two-phase mixture the pressure balance of

Eq. (4) can be generalized by introducing a network stress �̃ in the place of the osmotic

pressure ⇧. The thermodynamic pressure P is then naturally replaced by its tensorial form,

the total stress �, and

�ij = �̃ij � ↵p�ij. (19)

The negative sign on the pore pressure p reflects the di↵erent sign conventions for stress

and pressure: a positive stress indicates tension, while a positive pressure is compressive.

Here also there has appeared an additional factor ↵. This is necessary to account for the

relative compression of each of the two phases, with respect to each other. For incompressible

materials ↵ = 1, and the simpler balance of Eq. (4) is recovered. Combined with Darcy’s

law, Eq. (17), and appropriate constitutive relationships for the network and fluid, this

division of total stress into an e↵ective stress and a pore pressure is the starting point for

considering the deformation of a porous body in the theory of poroelasticity.
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D. Poroelasticity and thermoelasticity

For an elastic body an internal pore fluid acts like heat [21, 22]. A constitutive relation

for an elastic theory, incorporating either a pore fluid (poroelasticity) or the flow of heat

(thermoelasticity), can be derived from the choice of an appropriate thermodynamic poten-

tial. However, as the details can be somewhat involved, and the aim here will be to show

the analogous manner in which heat and pore fluid can lead to stress. Either case involves

an extra two moduli to be defined, in addition to the more familiar elastic moduli (such

as the bulk modulus, K). To account for the action of heat, one needs to define a specific

heat, cv, which describes how much the internal temperature will rise, with an injection of

heat (here, at constant volume). To couple this to a mechanical response the coe�cient of

thermal expansion, ↵T , is also needed. For a linear response, stress equilibrium is then

r · � = ↵vKrT (20)

where T is the temperature. This is, itself, a di↵usive property, which should evolve as

Tr2
T = ⇢cv

@T

@t

+ ↵vKT0
@✏ii

@t

. (21)

where T is thermal conductivity and ⇢ the density of the solid. The final term in Eq. (21)

is usually negligibly small, and often neglected, but accounts for the change in temperature

as a body is compressed, or expanded, adiabatically.

The equivalent theory for poroelasticity first involves taking the divergence of Eq. (19),

to give

r · �̃ = ↵rp (22)

since, internally, the condition for stress equilibrium is that r · � = 0, assuming that there

are no body forces. To account for the action of the pore fluid, one needs to additionally

define a specific storage, M✏, which describes how much the internal pressure will rise, with

an injection of pore fluid (here, at constant total system volume). When this is done, one

finds a di↵usion equation for pore pressure,



⌘

r2
p =

1

M✏

@p

@t

+ ↵

@✏ii

@t

(23)

which resembles the di↵usion equation for the internal temperature of a cooling body. This

exact correspondence between thermoelasticity (Eqs. (20) and (21)) and poroelasticity (Eqs.

(22) and (23)) allows results obtained in one domain to be applied, directly, in the other.
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FIG. 5: (a) A crack in a semi-infinite plate, in plane elasticity. The three modes of cracking, (b)
opening, (c) sliding (or shearing) and (d) tearing, correspond to the three linearly independent
directions that forces can be applied to the crack face. Mixed-mode fracture occurs when more
than one mode of cracking is active at the same time. Adapted from [14].

E. Fracture criteria

Poroelastic or thermoelastic stresses can lead to fracture, and this section will therefore

end with a short outline of the critical conditions for cracking. The theory of fracture

mechanics is centred around the question of when something will break. As shown in Fig.

5, there are three linearly independent modes of fracture, which correspond to di↵erent

directions over which forces can act on a crack tip. For any mode of fracture cracks will

grow when doing so reduces the free energy, UF , of a system: a crack of some area A grows

if @UF/@A < 0. The critical point that distinguishes a situation of a growing crack from one

where a crack can exist indefinitely occurs when there a change in the sign of the energy

release rate. The crack becomes unstable when

@UF

@A

= 0 and
@

2
UF

@A

2
< 0. (24)

Despite the importance often given to the first constraint, both conditions are necessary in

order to distinguish between stable and unstable cracks. For example, a thermal gradient

[53], or a gradient in the pore pressure of a drying material [28, 54], can stabilise a crack

and halt its growth from a region of high stress, to a region of low stress.

By dividing up the total energy into the energy stored internally in the deformation of the

body – the strain energy, Us – and a surface energy, one can reframe the critical condition

for fracture propagation in terms of the strain energy release rate G = �@Us/@A. This form

is known as Gri�th’s criteria for fracture propagation,

G = Gc and
@G

@A

> 0 (25)

where the critical strain energy release rate Gc is the energy cost to extend the fracture. For
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a thermodynamically reversible system Gc is equal to the interfacial energy of the breaking

material, or twice its surface energy [55]. Irreversible energy costs can also be included in

Gc, but this can require some caution [56]. For a linear elastic material the strain energy

density typically scales as Us ⇠ �

2
/E, where E is Young’s modulus, and � is the stress

tensor. The strain energy release rate will therefore scale as

G = c

2a�
2
0

E

(26)

for some characteristic length-scale a of a crack, characteristic applied stress �0, and a pre-

factor c that depends on the specific geometry of the system.

Finally, by considering the manner in which stresses are concentrated around a sharp

point one can demonstrate that there is a universal divergence of stress near a crack tip [57].

In Irwin’s reformulation [58] of Gri�th’s fracture criterion, the intensity of this divergence

is called the stress intensity factor K. It can be linked directly to the strain energy release

rate by considering the displacements and surface tractions along the surface of an open

crack. For example, given an opening (mode-I) crack,

KI =
p
GE = c�0

p
a. (27)

Similarly, for shearing (mode-II) and tearing (mode-III) stresses, one can define KII an KIII ,

respectively. In Irwin’s stress-representation, the critical condition for fracture assumes the

form

K = Kc and
@K

@A

> 0 (28)

for some fracture toughness Kc.

V. GEOPHYSICAL PATTERN FORMATION

The Earth is a complex, non-equilibrium, and nonlinear system. These are natural con-

ditions in which to expect self-organisation, which is indeed seen from beach ripples and

mega-dunes [59], to rhythmic chemical precipitation [60], branching streams [61], and mud-

cracks [5]. These structures usually arise from competition between two opposing forces, and

their shapes, sizes, and dynamics contain quantitative information about how they formed,

and the mechanisms underlying them. Such patterns can display fascinating order, and can

show an amazing robustness, despite a very noisy environment.

The common approach that I have brought to geophysical problems is to identify what

the driving mechanism behind a particular geophysical pattern could be, then to simplify

this into a dimensionless model, which can be rescaled into a laboratory environment. This

rescaling may also involve relying on analogous physics, such as moving from a thermoelastic

driving force, for fracture in permafrost soils, to a poroelastic driving force, for fracture in
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drying clays [1, 5].

Once a suitable analogue is identified, then an experimental model is constructed in which

the scaling theory and onset of instabilities can be tested. In such experiments a similarity

of form, no matter how attractive, in insu�cient for proof. It is far too easy to generate

the limited variety of simple prototypical patterns – waves, hexagons, spots, spirals, etc. –

by any of a wide variety of di↵erent mechanisms. Instead, one must rely on quantitative

comparisons, such as the critical conditions for the onset or transition in patterns, the scaling

laws for wavelengths or timescales, or the exact values of dimensionless parameters.

Finally, once a model has been tested experimentally, it can be returned for a novel round

of verification against direct field measurements. The insight gained from the lab will often

suggest new observations that can be made, or guide interpretation of existing data. In these

situations, one finds that the mere appearance of patterns in a natural environment can be a

powerful diagnostic tool of the processes that happened during their formation, which may

be long in the past, or in remote locations, such as Mars or even the polar regions of Earth,

which are challenging to access directly.

This general reductionist approach to studying geophysical pattern formation is explained

in more detail in [2]. This article was written to introduce a special theme issue, where

the tools of pattern formation and nonlinear dynamical systems are applied to geophysical

problems. In this issue, reviews on the established topics of dunes [59], coastline morphology

[62], submarine channels [63], and Liesegang banding [60], were presented alongside research

articles representative of a growing community of interdisciplinary scientists. Despite the

obvious appearance of geomorphic patterns, we are only beginning to learn how to read and

understand them properly. This issue also shows, for example, how fossil patterns can be

used to interpret events far o↵ in time [3], or how patterns seen by satellite imaging can be

used to understand the formation of landscapes [64]. Similarly, patterns evolve as conditions

change, and the topics discussed there make predictions as to how coastlines [62], marshes

[62], deserts [65] or permafrost [5, 66] will change in response to climate change, or can be

controlled by human ingenuity.

In my own research I have now followed this paradigm through to explain features of

three di↵erent physical systems: columnar joints, polygonal terrain, and Kinneyia. An

accessible review article of the first two problems is provided here in ??. The results on

columnar joints – the prismatic pillars of basalt that famously pattern landscapes like the

Giant’s Causeway or the Devil’s Tower – was the subject of my earlier work [28, 67–69]. It is

referenced occasionally here, in particular in [1, 5], where I show how these patterns can be

treated as a special case of a more general pattern-formation process, but is not a significant

part of what is presented here. Rather, I will focus on setting into place my research into

Kinneyia, fossil wrinkle patterns in ancient biofilms, and on the evolving fracture networks

that are responsible for the permafrost patterns already alluded to in Fig. 1.
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A. Kinneyia: a fossil enigma, a fossil instability

Kinneyia is a fossil wrinkle pattern found in the fossil record from over half the history of

our planet, from the mid-Archean to Jurassic periods [70, 71], but which has been singularly

absent from this record for the past 200 million years. It consists of small wrinkles, similar

in appearance to beach ripples, but noticeably smaller, as shown in Fig. 6. Typically,

these millimetre-to-centimetre wide periodic marks appear in association with shorelines,

and usually form as the capping layer of a major storm deposit, or other violent event.

The type fossil Kinneyia was catalogued by Walcott, well-known for his pioneering work

on Precambrian/Archaean palaeontology, in 1914, and has remained a puzzle for the past

hundred years. He suggested that it was the remains of a particular species [72], but the

ripple-markings of Kinneyia are now known to be much more generic, and belong to a class

of features known collectively as ‘microbially mediated sedimentary structures’ [71, 73, 74].

In simple terms, Kinneyia is analogous to a footprint left by some kind of activity of ancient

microbial mats. However, the mechanism of its formation has remained elusive so far.

In [3] we suggest a simple, robust mechanism to explain the formation of Kinneyia, as

the fossilised remains of a hydrodynamical instability in ancient biomats. Modern biofilms

and biomats consist of microbes held together by a gel-like matrix of extracellular polymeric

substances (see e.g. a recent review [75]). The rheology of this matrix is similar to that of a

polymer solution, and the mat behaves in many ways as a viscoelastic [75, 76]. Remarkably,

despite the fact that biofilms’ e↵ective steady-state viscosity and shear modulus vary by

many orders of magnitude, across di↵erent species, the ratio of these two properties, which

defines a relaxation time, is strongly preserved, and typically about 20 minutes [76].

Based on the rheology of modern biomats, and the close association of the respective

fossils with storms, we suggest that Kinneyia patterns form by a hydrodynamic instability

of the surface of a biomat, when water flows over its surface. This is a Kelvin-Helmholtz

type instability, similar to how shear flow in cloud layers can lead to the gentle undulations

of the edges of a cloud bank. Generally, the interface between two viscous layers, which

respond to shear in di↵erent ways, will be unstable under shear flow. We performed a linear

stability analysis of a simple geometry consisting of a viscoelastic mat adhered to a rigid

substrate, over which water flowed at some fixed speed v. The analysis predicts that the

film’s surface is unstable to wrinkling on a wavelength about 4-5 times the thickness of the

film [3], and that the wavelength does not depend on either the film’s viscosity, or the flow

speed v (although the growth rate of the instability should depend on both).

Analogue experiments using polymer solutions as mats confirm these predictions – under

flowing water ripples spontaneously form at a wavelength 3-4 times the thickness of the

film, h, and grow at this wavelength to reach a saturation amplitude ⇠ h. Fossils, and

casts of fossils, were also collected from exposures of Kinneyia in Namibia, and scanned to

produce a 3-D height profile. The ratio of wavelength to amplitude matches the experimental

observations, and while we do not know the thickness of the original mat (as the fossil only
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FIG. 6: (a,b) Kinneyia is a wrinkle-pattern found in the fossil record between 2.9 and 0.2 billion
years ago. (c) Here it is suggested that it forms by an instability of a thin viscous fluid to the
shear flow of water above it. A linear stability analysis [3] suggests that the interface between
the two fluids will become unstable to periodic wrinkling. The most unstable mode of the ripples,
�, is predicted to be proportional to the film thickness h, and independent of the flow speed v,
or viscosity of the mat. (d) Experiments on analogue fluids, consisting of a 1-4 mm thick layer
of cross-linked poly(vinylalchohol) solution, over which water has flowed. The wavelength of the
resulting ripples agrees with the predictions of linear stability theory, while (d) the saturation
amplitude A agrees with comparable measurements from field specimens. Adapted from [3].

preserves the sediment’s imprint of the mat), the thickness inferred from their wavelengths

matches those of typical modern mats [3].

The robustness of the wrinkling mechanism suggests that similar structures should be

seen in modern mats. However, Kinneyia is linked to storm deposits, which are infrequent.

Additionally, grazing animals and rapid bioturbation since the Cambrian have rendered

conditions for biomats increasingly unfavourable; they are relatively scarce today. Thus,

Kinneyia may have become so rare as to not enter the fossil record. Another line of thought

concerns rheology: biomats are living, active matter, capable of a mechanical response to

stress.. As we do not know the history of this response, the microbial mats may well have

evolved an active motion to counteract the wrinkling instability. We are developing biotic

experiments to check these possibilities, either of which would profoundly impact how we

interpret these fossil clues to the history of life on Earth.

Finally, although our suggested mechanism for Kinneyia was published less than a year

ago, it has already prompted some notable discussion. In particular, another model of

wrinkle-formation has been proposed [77], based on the scouring action of broken fragments

of mat, floating in wavy water. These two models now make di↵erent predictions for the

conditions in which Kinneyia should form, and the next round of experiments are already

being designed and run in my group.
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(a) (b)
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FIG. 7: Cracks in mud can show (a) a rectilinear pattern, or (b) a hexagonal pattern (images
courtesy of Bernard Hallet). Cracks in permafrost soils can also form in (c) rectilinear patterns,
or (d) hexagonal patterns. Visually, such polygonal terrain looks similar to mud crack patterns,
except that the spacing between cracks is much larger, about ten metres. Both mud cracks and
polygonal terrain form as the result of the contraction of a ‘thin’ brittle layer – where the layer
thickness is the shortest relevant length-scale in the problem. Adapted from [14].

B. Drying mud and permafrost patterns

What do mud crack patterns look like? In nature, one can find mud cracks with a mostly

rectilinear pattern, like that shown in Fig. 7(a). However, as shown in Fig. 7(b), hexagonal

mud cracks are also relatively common. They are often seen in places like Death Valley, or

near the toes of glaciers, where a fine-grained clay sits undisturbed for long periods of time,

except for changes in the weather. In [4, 5] I explored the di↵erences between these two

patterns, explained how a rectilinear crack pattern can evolve towards a hexagonal one, and

identified the necessary conditions for it to do so.

Similar patterns, on a much di↵erent length scale, are also seen in frozen soils in the polar

regions of the Earth and Mars. Permafrost occurs in ground where the mean temperature,

averaged throughout the year, is below zero. The pore space in permafrost soils is often

saturated with ice, and forms into a very tough ice-cemented soil. Despite the average

temperature being sub-zero, there are still significant annual temperature swings between

summer and winter. The thermal stresses associated with these temperature variations can

easily be large enough to open contraction cracks in ice-cemented permafrost soils, a few

centimetres wide and a few metres deep, during the winter [78, 79]. These cracks form a

network with an average spacing between cracks of about ten or twenty metres. Nevertheless,
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the cracking soil can be considered as a ‘thin’ film, as its thickness is small compared to

any other relevant length-scales. Indeed, it was recently shown that the spacing of thermal

contraction cracks in Antarctic soils is proportional to the thickness of the ice-cemented

soil layer [80]. This is expected for thin layers, due to the e↵ect of crack saturation [81].

During the summer months the ground warms and the cracks close and at least partially

heal. However, while they were open, material such as sand or snow will have had the

opportunity to fall into the cracks. This intrusive material will act as a line of weakness,

guiding the formation of cracks near the same locations, in the following winter. Over tens of

thousands of years, this process is known to lead to the complete overturning and recycling

of near-surface permafrost soils [82, 83].

The networks of cracks that occur in permafrost regions create vast landscapes, known as

polygonal terrain. These cracks are much bigger, and more widely spaced, than the cracks

in dried mud, but otherwise closely resemble them. They can also appear as a rectilinear

pattern, as shown in Fig. 7(c), or a hexagonal network, as shown in Fig. 7(d). Based on a

number of di↵erent dating techniques it is known that the hexagonal patterns are usually

much older than the rectilinear ones, suggesting that there is a dynamical process linking

the two types of network [83]. However, due to the millennial timescales involved, there are

only limited direct measurements that can be made on the evolution of polygonal terrain.

The two problems of mud cracks and polygonal terrain are, in fact, related. There is

an exact mathematical analogy between the physics of cooling and drying, and the stresses

that either develop. This was discussed above in Section IV.D. In particular, both heat and

moisture act as di↵usive properties. As a result, one can write a di↵usion equation for the

internal fluid pressure p, or temperature T [21]. This di↵usive field is coupled to the stress

�̃ in the solid network of soil grains, where the appropriate balance of internal forces gives

r · �̃ =

8
<

:
↵rp

↵vKrT

(29)

for the cases of stress induced by an uneven pore pressure p or temperature T . In a thin layer

where the temperature or pore pressure only varies vertically, the resulting stress will be an

in-plane tension of the cooling permafrost soil or drying clay. These tensions will lead to

the cracking of the cooling or drying layer, through the process of sequential fragmentation.

Cracks form one at a time, run across the mud until they hit another crack, or a boundary,

and the crack spacing saturates when it is comparable to the thickness of the cracking layer.

For an initially homogeneous layer a later crack will tend to curve to hit an earlier one at

right angles, because the earlier crack has already released the stress normal to itself [84].

It has not been clear how the same forces could generate a hexagonal pattern, and [4, 5] set

out to answer this question.

Based on the analogy between poroelasticity and thermoelasticity, and on the known
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FIG. 8: (a-d) A schematic mechanism for the evolution of a mud-crack pattern, through repeated
dryings. (a) In the first cycle of cracking a later crack hits an earlier one at right angles. (b) In the
next cycle, if the order of cracking changes, the vertex position will be deflected, as each individual
crack will grow in a manner that maximises its strain energy release rate, at the point and time of
crack opening. (c) The di↵erences after repeated cracking cycles will accumulate, and (d) distort
the vertex until a more stable configuration of equi-angled joints is reached. (e) The distribution of
angles between cracks evolves over time: shown here are the probability distributions of the joint
angles after the 1st, 5th, 10th, and 25th cycle of cracking. Reproduced from [14].

behaviour of permafrost soils, I developed an analogue experiment to study the dynamics

of polygonal terrain [4, 5]. Layers of bentonite clay, a few millimetres thick, were dried.

These layers crack, but the cracks heal if the mud is rewet, for example by spraying the

clay’s surface with a find mist of water until it is saturated. When the mud is dried for a

second time it cracks again, and the new cracks form near the lines of the cracks from the

first drying [4]. However, there are subtle di↵erences between the cracks in the first, second,

and subsequent dryings. The positions of the cracks are nearly the same, but the vertices

formed by the intersection of di↵erent cracks have shifted slightly, and the angles at which

the cracks approach those vertices have changed. This cycling of drying and wetting can

be repeated indefinitely, and the di↵erences in the patterns will slowly accumulate, allowing

the possibility for the gradual rearrangement of the crack network [4, 5]. The physics of this

evolution is explained at length in [5], and sketched here in Fig. 8 (a-d).

The process described above will create a slow, but directed, motion of the vertices. If the

clay is rewet and dried for a third time, the cracking can change slightly, again. The e↵ect

of this is predicted to be a gradual, ratchet-like motion of the vertex up the crack branch

that originally approached the vertex at two right angles [4], which is in experimental mud-

crack patterns [5]. Furthermore, the angles around the vertex will stretch and approach

120�. Indeed, averaged over long enough time, if all the possible sequences at which cracks

populate a vertex are explored with equal probability, symmetry alone would predict a ‘Y’

shape to the vertex, with all angles equal, as sketched in Fig. 8(d). The distribution of

angles between cracks, at vertices, was measured over the first 25 cycles of cracking [4],

and some of these results are shown in Fig. 8(e). The mud-crack pattern evolves from a

population of right angled crack junctions, to equi-angled Y junctions, over only a few cycles

of cracking and healing.

The essential conditions for the evolution of a crack pattern, in the manner described
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above, can be briefly summarised [5]. First, cycles of cracking must occur repeatedly, for

example in the cracking/healing manner of the mud-crack experiments, or by advancing

through space like columnar joints, in order for there to be any opportunity for evolution.

Second, the positions of cracks from previous cracking cycles must guide the locations of

any new cracks, but not determine their sequence. If there was no memory then the cracks

would be randomly generated in each cycle, while if there was too strict a repetition of the

pattern there would be no driving force for change, besides random noise. Finally, the paths

of the cracks must be determined, in each repetition, by growth along the direction that

maximises the di↵erence between the strain energy release rate G, and the surface energy

of the new cracks, Gc. In Section VI this will be introduced as the condition that G�Gc is

maximised along the path of crack growth, as an extension of the Gri�th criteria.

These conditions apply equally well to mud cracks and to polygonal terrain, whose pattern

evolves over thousands of years. The cracks in permafrost reform each winter, and heal each

summer. These cracks have a long-term memory, even forming depressions in the ground

over thousands of repetitions [78, 83]. The sequence of cracking has been measured using

buried electrical cables: when a crack opened it would break a cable running across it, and

the time of this could be recorded electronically [79, 85]. The sequence of breaking di↵ers

in di↵erent winters, giving the pattern the necessary driving force for change.

More generally, these conditions apply to a wide range of interesting patterns, including

columnar joints [1, 5], fracture patterns on eroding gypsum dunes [5, 86], and perhaps

surprisingly the embryonic development of scales on head of Nile Crocodiles [20], and can

explain the appearance of ordered crack patterns in these systems.

Finally, to return to the original question of this section: what do mud crack patterns

look like? If they are fresh patterns, forming in homogeneous mud, they will be rectilinear.

If the mud is incapable of any memory then the mud-cracks will also be rectilinear, even if

the mud is dried and wet repeatedly. If there is memory, either stored in the structure of

the mud (as in [30]), or as an imperfectly healed crack surface, or stored geometrically by a

permanent depression near the locations of cracks (like in polygonal terrain), then there is

the possibility for evolution. If this is the case, and if the mud is allowed to crack and heal

many times, then the pattern can evolve towards a hexagonal pattern.

VI. FRACTURE PATTERNS IN THIN FILMS

As has already been suggested above, fracture patterns can be very rich, and represent

a challenge to explain. However, their diversity also represents an opportunity – there is no

generally accepted model to explain the direction in which a crack will grow or propagate.

The physics of these patterns is captured by an energy balance as the cracks grow. Unlike

many other physical problems, however, crack growth involves only a local energy minimi-

sation, at the point and time that a crack is growing, rather than the global minimisation of
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some functional. Since energy can be released by the widening of a crack anywhere along its

path, whereas to a good approximation energy is only spent in a small region immediately

around a growing crack tip, the entire history of the crack a↵ects how it will grow at any

instant. This means that although the highly practical question of whether a crack will

grow or not (and hence, whether a bridge will fall down, or an airplane wing snap o↵) is

solved, one cannot accurately predict, yet, the direction that a crack will grow in any but the

simplest cases. I am investigating the dynamics of cracks in thin sheets, with two general

long-term goals:

• Predicting how a crack will grow in an arbitrary situation, and

• Designing/templating structures to give a desired crack pattern.

Here I present two main results, which aim towards these ends. First, I will discuss the

problem of crack path prediction, and show how wavy cracks appear in drying colloidal

films. These are used to start developing a model of how cracks interact with each other,

to determine which way they will grow [6]. Second, I will discuss the problem of how to

evaluate fracture criteria in thin films that may have a non-linear elastic [7] or plastic [8]

response. These relate to how to design crack-resistant films and coatings.

A. Crack paths, interacting cracks, and wavy cracks

The critical conditions for fracture were introduced in Section IV.E, and are a well-

established theory with immense practical value in engineering disciplines. However, in

order to form a complete theory of fracture these conditions need to be supplemented with

an equation of motion for a growing crack tip (see e.g. a recent discussion in [87]). The

geophysical problems discussed above have already hinted at this need. To date there is no

general rule, derivable from first principles, which describes which way a crack will grow.

The lack of a well-founded model for crack path prediction is an area where desicca-

tion/contraction cracks are making fundamental contributions. The development of a rig-

orous theory, with a wide range of applicability, will require a combination of experimental,

numeric, and theoretical e↵orts on a number of paradigm-systems. Table-top experiments

in slurries, pastes, or gels, allow patterns to develop through the interaction of simple in-

dividual cracks in thin, approximately 2D layers. They give repeatable results in simple

and repeatable conditions, and demonstrate instabilities such as spirals [88, 89], waves [6],

starbursts [90, 91] and other structures [92, 93]. They also allow the control of the forces on

these cracks through modulation of electric and magnetic fields [46–48]. Such experiments

are giving direction, and strict observational constraints, to a search for a general law of

crack path selection.

This is not to say that there are not good guiding ideas for crack path prediction. In

fact, there are two. First is the extension of the Gri�th criteria for fracture, which balances
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FIG. 9: (a) Directional drying of colloidal dispersions leads to the development of a series of drying
fronts. (1) A liquid dispersion like paint first (2) orders, then (3) solidifies [9]. The solid (4) cracks,
and ultimately (5) drains of water, forming the final dry solid porous film [97, 98]. The wet solid
regions (3-4) are usually modelled as elastic materials, across which extend gradients in capillary
pressure, and hence in-plane stress. These gradients are a result of surface evaporation, which
drives Darcy flow through the porous film (Eq. (17)). Cracks may grow when the magnitude of
the pore pressure (blue curve) reaches some critical value pc. (b) Wavy cracks can form by growing
between the usual array of parallel cracks. Adapted from [6, 8].

the strain energy release rate G with the energy losses during fracture, Gc. In this model,

a crack grows in the direction which maximises G � Gc, at all points along its path [56].

Although easy to state in words, further development of the variational principles necessary

to give the condition of a maximum energy release rate quantitative predictive power has

proved di�cult, for a number of reasons. The energy release rate is hysteretic, in that it

can depend on the entire past path of the crack. Furthermore, the mathematics of treating

even a slightly curving or kinked crack are already exceptionally challenging [94].

Alternatively, the principle of local symmetry predicts that a crack will follow a path where

the shear stress intensity factor is zero, KII = 0, because otherwise the force distribution

around a crack tip would be asymmetric, and this could be expected to bias the growth

of the crack towards the direction of higher stresses. For the limit of an isotropic solid

under constant loading conditions and plane elasticity the principles of local symmetry and

maximum energy release rate are equivalent [94, 95]. For more generic conditions this will

not be true. A simple counter-example is if Gc is direction-dependent (e.g. cleavage along

crystal planes) as KII cannot encode such information. Yet as elegantly demonstrated by

recent experiments where wavy cracks in a film are guided by the orientation of a silicon

crystal substrate [19], Gc matters to crack paths. An additional case where Gc is important

is the memory e↵ect where the anisotropic structure of a paste can guide crack paths along

the direction of a remembered vibration, or flow [30, 96].
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In [6] I identify how wavy cracks appear in drying colloidal films. In this experiment a

thin layer of liquid colloidal dispersion is painted onto a glass slide, and allowed to dry. It

does so directionally, from the edges inwards, forming a rigid solid film during the process.

The capillary pressures in the film are easily large enough to drive fracture, and here cracks

will advance directionally, across the film, following the line of the drying, as sketched in

Fig. 9. Normally, a set of equally-spaced out parallel cracks will form, with a crack spacing

proportional to the film thickness [51, 99–101]. The tips of these cracks are arranged along

a cracking front, parallel to the drying fronts, fixed by some critical cracking pressure pc.

However, as described in [6], occasionally a crack will form behind this regular cracking

front, between two existing straight cracks. The flanking cracks preferentially release stress

normal to their surface, and so the wavy crack would gain energy by curving towards ei-

ther one. However, as it approaches one it must advance into a region with a lower total

strain energy density. A balance between these e↵ects suggests an oscillating path, which

continuously curves towards the local direction of maximum strain energy release rate.

The geometry of wavy cracks in a thin film is simple enough to permits an analytic test

of the crack path models outlined above [6]. The form that a generic equation of motion for

a crack could take is severely constrained by symmetry. A framework for this was provided

by Hodgdon and Sethna [102]. The goal is to predict the path �(l), parameterised by some

path length l, which a crack tip follows as it grows. In a two-dimensional film the crack tip

will have some unit tangent vector t̂ = d�/dl and an accompanying normal vector n̂. The

motion of the tip, if it grows smoothly, can be fully described by its acceleration

d

2�

dl

2
=

dt̂

dl

= fn̂. (30)

The first equality here involves simply taking the derivative of the definition of the tangent

vector, with respect to the path length. For the second equality, one notes that t̂ is a unit

vector, and cannot change its length. It can only be subject to a normal acceleration. As

such, it must hold that dt̂/dl = fn̂ for some function f . Furthermore, inversion symmetry

in the choice of the normal n̂ requires f must change sign under the operation n̂ ! �n̂ (i.e.

f is a pseudoscalar). Up to this point, this model is only a pure statement of geometry. The

choice of f contains all the physics.

For a wavy crack in a thin film adhered to a rigid substrate, the forces acting on the crack

tip, and the manner in which it relaxes stress, can be simplified. Here, we formulated the

principle of maximum energy release rate by a linearised form for f which includes the term

d

2�

dl

2
= �

✓
1

Gc
rG · n̂

◆
n̂. (31)

This predicts that an advancing crack always curves up any local gradients in the energy

release rate, with a curvature proportional to the magnitude of the gradient. We then
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FIG. 10: (a) Wavy cracks in drying colloidal latex films form when a secondary crack tries to
advance between two pre-existing straight cracks. (b) A crack path prediction that requires cracks
to curve towards the direction of maximum strain energy release rate accurately predicts the
relationship between wavelength �, film thickness h, and the distance between the bounding cracks,
2b (for an order-1 constant c). Adapted from [6].

performed a linear stability analysis for a straight crack running between two pre-existing

parallel cracks. We found that while local symmetry will predict such a crack to be stable,

Eq. (31) predicts oscillations, which capably reproduce the wavelength selection of wavy

cracks in drying films (see Fig. 10). However, we must conclude that this form is still

noticeably incomplete in that it cannot deal with angular variations in stress [6].

A rigorous energy-based model for crack paths would allow it to fit into the emerging

paradigm for other elastic instabilities – buckling, wrinkling, crinkling – in which patterns

can be described by an energy balance between di↵erent modes of deformation, such as

stretching and bending (e.g. [103–105]); fracture adds to the surface energy, at the expense

of strain energy. A notably similar approach is also being followed by the group of Benoit

Roman, in relation to tearing, and a review of this work appeared last year [106].

I am currently continuing my energy-based approach to understanding fracture patterns,

and studying the behaviour of cracks on uneven surfaces, or in films with a non-trivial

curvature.

B. Are paint cracks really elastic?

Given the applications of the fracture of paints and clays already discussed it is a fair

question to ask whether they can be treated as elastic materials, or not. It is also an

important applied question to ask under what conditions a film or coating will fail.

In [7, 8] I contribute to the question of when and how a colloidal film will fail. As

described above, internal pore pressures can be generated during the drying of a multi-phase

material, like paint or clay. These capillary pressures are the result of small menisci between

the porous material’s constituent particles, and act to rip the particles apart from each
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other. For example, consider if solid particles are dispersed in a volatile liquid, which is then

removed by evaporation. If the particles respond by assembling into a close-packed structure

(as would be the equilibrium configuration of hard spheres at high-enough densities), then

the final dregs of liquid will be trapped in menisci in the small pore spaces between the

particles. The Young-Laplace pressures that can be supported by that fluid, before if finally

evaporates, can be huge – for the colloidal silica that is used as a glossy coating for paper,

the particles are of order 10 nm in diameter, and can support fluid pressures of ⇠ 80 MPa,

or about 800 atmospheres [51].

For a brittle film adhered to an unyielding substrate, a crack will grow across the film if

the stress exceeds some critical stress, which depends on the thickness of the film. Since there

is some maximum magnitude, p0 to the capillary pressure, before the film dries out, one can

invert this relation to predict a critical cracking thickness, below which a film will survive

the rigours of drying, and above which it will break [107, 108]. For a linear elastic brittle

material (and neglecting Poisson ratio e↵ects, for demonstration purposes), this predicts

that the critical film thicknesses is

hc ⇠ GcE

p

2
0

. (32)

This can explain why, for example, a thick layer of paint will crack, while a thin coat will

dry smoothly. It also limits the thickness to which photonic materials can be made, by the

otherwise e↵ective method of drying [24–26].

However, many industrial paints and coatings are not linear elastic materials. A packing

of spherical colloidal particles will not be expected to behave in a linear way, even if the

elasticity of the material of which the particles are composed is perfectly linear. At best the

particles will have Hertzian contacts, and on the length-scales of colloidal interactions these

will be deformed by other forces, such as van der Waals interactions [109, 110]. Furthermore,

many materials contain elements which allow for dissipation of stresses, for example by

viscous flow, or creep (see e.g. [111] for a description of some of the complex mechanisms

used). Even simple measurement of the forces at which paint cracks can be di�cult. The

standard method is to apply a thin film to a flexible cantilever [54, 98]. As stress develops

in the film, it causes the cantilever to deflect. A suitably averaged film-stress can be then

measured by monitoring the deflection of a calibrated cantilever, as in Fig. 11(a).

For [7], a collaborative paper included here, my contributions were to synthesise the

colloidal polystyrene used, and developed an alternative approach to measuring stress, which

involved placing a small droplet of colloid at the tip of the cantilever (Fig. 11(b)). The

colloids were prepared over a range of sizes, which varied both the expected E, and p0, of

the film material. We hoped that the use of a smaller area of material would allow for a

more uniform pressure to develop during drying. It did, allowing us to test some of the more

recent predictions of failure criteria in non-linear elastic materials, which suggest a critical

thickness that scales as hc ⇠ p

�3/2
0 [54, 112], rather than that given in Eq. (32). However,

the system was still quite noisy, considerably limiting the value of the tests. To develop
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dampened in the profiles of the thicker films, probably due to the
presence of water. These vibrations could also be reduced by
adjusting the experimental setup. However, this was more trial
and error, rather than the exact setup techniques. Regardless, it
should be emphasized that the ambiguity in the vertical axis and
the noise from the heating element did not affect the relative abso-
lute stress values between the different film thicknesses, which is
the result of interest in this work.

As observed in Fig. 3, for a thicker film, the maximum stress was
achieved at a later time, due to the longer water evaporation per-
iod. Also, for a thicker film, the stress sustained by the film, before
crack formation occurred, was smaller. This trend is reinforced in
Fig. 4, which compiles data for a range of film thicknesses from
15 to 333 lm. The complexity in this experiment arose from the
difficulty in obtaining repetitive wet film thickness, despite multi-
ple trials. The many repeats around a film thickness of 50–60 lm
indicated the error to be around ±0.05 for the normalised stress.
In spite of this, the results in Fig. 4 still indicated a smaller film
stress for thicker latex films. This is in agreement with the results
of Petersen et al. [11] and Tirumkudulu and Russel [13]. The inset
graph in Fig. 4 plots the same data using logarithmic axes. This
serves to compare the experimental result with the Tirumkulu
and Russel model. The model predicted that the cracking film
stress is inversely dependent at a power of 2/3 to the film thickness
[13]. The correlation of the trend-line with a slope of 2/3 with the
experimental results shows good agreement with Tirumkudulu
and Russel model. This compatibility is further analysed in
Section 4.3.

A point to note is that the maximum stress for each film was
measured between the maximum point and when the stress had
levelled after cracking. This point corresponds to the return of
the substrate to its original position. The reason for this was to
compensate for the delay in data collection, causing difficulties in
ascertaining the exact zero point, as explained earlier. It should
be reemphasized that the relative stress values between the differ-
ent experiments was unaffected by this issue due to the consis-
tency in the data analysis. Hence, Fig. 4 is an accurate trend

comparison, whereby thinner films can sustain larger film stress
before any crack formation is observed.

4.2. Effect of particle size on film stress

Polystyrene latex particles were dried as drops on the free-end
of the flexible substrate. Twenty microliters of dispersion was
pipetted each time, to give a cap drop with a projected diameter
of 4.5 ± 0.5 mm. The reason for using a drop, instead of a thin latex
film, was due to the high interfacial energy of the polystyrene dis-
persion on brass substrate. This led to difficulties in film casting
and almost instantaneous balling up of the latex. The drops were
dried at 25.6 ± 0.1 !C and 41.4 ± 4.0%RH on 100 lm-thick brass
substrates. The induced substrate curvature change was correlated
to a film stress using Eq. (6), with the absolute stress taken as the
stress difference between the maximum stress and the levelled-off
stress after cracking.

Fig. 5 shows an example of the film stress and normalised stress
evolution profile for a latex drop with particle diameter of 105 nm.
Water evaporated instantaneously after the latex drop was cast.
This corresponds to the gradual increase in stress values, associ-
ated with the upward movement of the substrate. As the latex
particles approached consolidation, the film stress increased dra-
matically to a maximum. After this, the value plummeted, indicat-
ing a relaxation in the film. This could be explained by the
observed cracks in the latex film at the end of the experiment
(image not presented). The inset graph in Fig. 5 shows the close-
up of the stress peak located between 65 and 67 min. As indicated,
the stress peak lasted for 30 s within this period, with a total of fif-
teen data points. This confirms the validity of the stress peak
detection, which corresponds to a maximum stress endurable by
the polystyrene latex drop-film before cracking.

A second stress dip, which lasted approximately 5 min, between
68 and 73 min, was observed after crack formation. This was spec-
ulated to be due to the peeling of the dried latex drop from the sub-
strate. This could be seen in Fig. 6, whereby the detached latex
drop (in the solid border) was marginally shifted in the north-east
direction, for photography. This revealed the residual latex parti-
cles (in the dash border), where the drop was originally positioned.
This delamination relieved all the stress-induced on the substrate,

Fig. 4. Maximum normalised stress as a function of dried film thickness hrcp, with
solid line indicating the best fit using least squares method. Inset graph plots the
data set on logarithmic axes, with a fitting line of slope 2/3. This indicates that the
experimental data is in good consistency with the Tirumkudulu and Russel model
[13]. (The repeat measurements around a film thickness of 50 lm indicate the
accuracy of the measurement of normalised stress to be around ±0.05).

Fig. 5. Stress evolution profile for latex drop-film with particle diameter of 105 nm
(inset graph provides close-up of the stress peak, with location of data points
indicated).
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is the Young’s modulus of the substrate, and for brass, the value is
taken as 100 GPa. ts, Ls and ws are the thickness, length and width
of the substrate respectively.

A few considerations should be noted when using the beam
bending technique. Firstly, the weight loss from water evaporation,
which contributed to the measured deflection, should be corrected
for in the calculation. Even though this was not performed, as a re-
sult of the experimental limitation, blank experiments of drying
water films (results not shown) indicated that the measured sub-
strate deflection from water evaporation at a given time was small
(<10%) when compared to the deflection induced by the latex par-
ticles and film. Therefore, it was acceptable to use the raw uncor-
rected data in the experiments and subsequent analysis.
Secondly, the zero starting point for the experiment was difficult
to be determined precisely. This was subjective to the efficiency
in setting up the experiment. Finally, the beam bending technique
was sensitive to any local and micro-structural differences in the
latex film, despite only giving an averaged-film stress.

3. Theory

3.1. Stress calculation for rectangular thin film geometry

For the poly(MMA/BA) latex film, the loading scenario on the
flexible substrate is shown in Fig. 2a. The experiment measured
the deflection angle h from the equivalent applied mass using
Eq. (1). The measured deflection angle was subsequently correlated
to an averaged-film stress according to Eq. (2), as derived from
Petersen et al. [11].

rf ¼
Est3

s

6tf ðts þ tf ÞLf

ws

wf
h ð2Þ

where rf is the averaged-film stress in the plane of film, h is the
experimental deflection angle, while tf, Lf and wf are the average-
thickness, length and width of the latex film respectively. The term
ws/wf recognised that the film was not applied across the entire
width of the substrate and hence, the deflection angle was smaller
than would be measured for a film spanning the entire substrate
width. The average-thickness tf was calculated from the arithmetic
mean of the initial and final dry film thicknesses. The initial thick-
ness was determined by the gap width of the spiral pulling bar,
while the final thickness was calculated using the initial thickness
and known solid content of the latex dispersion. For a latex disper-
sion with solids content of 47%, the use of average-film thickness
introduced at most an error of 25%, as opposed to using the instan-
taneous film thickness. It is the relative difference in stress mea-
surement, as a function of the film thickness, which is of
importance in this work. The same latex dispersion with solids con-
tent of 47% was used throughout these experiments. Therefore, the

25% error in film thickness calculation would impose the same devi-
ation in all the values, but not in the key experimental trend.

Our previous paper [19] erroneously omitted the factor ws/wf

from the expression to calculate the stress from the deflection an-
gle (Eq. (2) in Ref. [19]). However, the software used to calculate
the film stress used this factor and so although Eq. (2) in Ref.
[19] should contain this factor, the reported stress values are
correct.

The stress value rf was normalised by dividing the averaged-film
stress with the characteristic capillary pressure, 2cwa

Rp
, where cwa is

the interfacial tension of air/water, taken as 0.072 N/m, and Rp is
the latex particle radius. This extensively used normalisation
relates to the maximum pressure that can be obtained for rigid
spheres [12].

An important point to note is that the beam bending technique
only provides a width-averaged stress in the film. Because the film
dries non-uniformly, any spatial variation in the stress will be
impossible to deconvolute in the average measured value. The
non-uniform drying manifests itself in the drying fronts propagat-
ing from the film edges into the bulk of the film. The drying front
starts at the beam tip and hence a mass of solid particles is depos-
ited there. Because the entire film width (at the beam tip) will be
consolidated, the film stress will be pretty uniform across the film
width. Further away from the beam tip, on any width cross-sec-
tion, there will be fluid and solid regions, and these regions will
have very different stress values. The Stoney equation assumes a
concentrated applied load at the beam tip and this is the reported
stress value. Hence, whilst recognising the necessity to width-aver-
age the stress, the measured value is a reasonable estimate for the
film stress at the beam tip – and indeed, reasonable numbers are
extracted.

3.2. Stress calculation for spherical cap drop-film geometry

For the spherical cap polystyrene latex drop-film, the schematic
of the flexible substrate loading is illustrated in Fig. 2b. The con-
centrated axial load P on the substrate is obtained by integrating
the induced film stress at every point of its spherical coordinates
to a horizontal load component. This is represented in the follow-
ing equation:

P ¼
Z 90%

b¼&90%

Z 90%

W¼0%
rdR2

dðsin bÞðcos W cos bÞdWdb

¼ rdR2
d sin Wj90%

0% ' sin2 bj90%
0%

h i

¼ rdR2
d ð3Þ

where rd is the drop-film stress in the plane of film, Rd is the pro-
jected radius of the dried latex drop-film onto the substrate, b is
the azimuth angle in the plane of drop-film and W is the polar angle
measured from the z-axis.

Hence, the concentrated bending moment Md for the latex drop-
film is given by

Md ¼ rdR2
d

ts þ td

2

! "
ð4Þ

where td is the average-thickness of the latex drop. The average-
thickness td was also calculated as the arithmetic mean of the initial
and final film thicknesses. The initial thickness was determined
from a volumetric calculation for a spherical cap drop. This assumed
that the drop height was the only variable as drying proceeded,
allowing a constant radius, Rd throughout. Meanwhile, the final
thickness was calculated using the initial thickness and known solid
content of the latex dispersion. For latex dispersions with solids
content varying between 10% and 17%, the use of average-film
thickness introduced a 70% maximum error, as opposed to using

ws

ts 

σ

Ls 

Latex film

M M 

M M 

σ

Latex drop-film

(a)

(b)
Fig. 2. Schematic diagram for loading on flexible substrate for (a) latex thin film
and (b) latex drop-film [adapted from Zhang et al. [26]].
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(c)

FIG. 11: (a) The deflection of a cantilever can be used to measure the stress of a film dried over it,
including the stress at which fracture happens. In [7] we use this method, and (b) a droplet-based
method, to look at the critical conditions for fracture, which (c) should show signatures of the
non-linear elasticity of the film in the relationship of cracking stress, to film thickness. Reproduced
from [7].

a better technique, which would also allow spatial resolution of stresses in the film, I was

also involved in mentoring a doctoral student, in Cambridge. Together, we worked on an

optical technique involving measuring interference fringes (Newton’s rings), caused by the

deflection of a wafer over which a drying film was cast. While successful, and now essentially

complete, this research is not yet published.

In [8], the question was, rather, whether colloidal films were behaving as brittle materi-

als. There has been a considerable amount of theoretical e↵ort spent in either predicting the

failure conditions of these films [54, 112, 113], or in analysing the results of observed defor-

mation fields [114–117] in cracking films. In the early work that eventually led to [8] I had

also been engaged in evaluating of the stress field around cracks in colloidal films, with the

aim of more carefully deterimining their cracking conditions. However, the results of careful

measurement of the pattern of surface deflections, as well as indentation experiments that

probed the constitutive relationship of the drying colloidal materials, could not be reconciled

with an elastic response, linear or not. In fact, the more precise we made the observations,

and the more independent avenues of evidence we gathered, the more inconsistent the data

became. For certain cases viscoelastic responses in colloidal materials are known, and ex-

ploited in order to relieve stresses gradually, rather than through fracture (e.g[111, 113]).

However, the particles we were using were hard spheres, and all common wisdom suggested

that the films they made were perfectly brittle, elastic bodies.

In response to this issue we began to ask the basic question of whether these films are,

in fact, behaving elastically, or plastically. For this, we looked at two very di↵erent kinds

of experiments. The opening width of an elastic crack, in a linear material, should follow a

parabolic shape given by

� =
8Kc

E

p
r/2⇡ (33)

for a distance r away from the crack tip [56]. We tested this prediction, and in the process

28



Elasticity, multi-phase flow and geophysical pattern formation L.Goehring

(a)

(c)

(b)

(d)

(e)
0 2 4

x 10−6

−200

0

200

H
ei

gh
t (

nm
)

Position (µm)
1µm

1µm

1µm

1µm

1µm

! = 2a 6 / 3
= 162 nm

FIG. 12: Atomic force micrographs of drying latex. (a) A crack shows damage and micro-cracks
ahead of the crack tip. Out-of-plane deformation is also noticed: the height profile across the
overlain line segment (inset) shows a step in height of one stacking plane. (b) Another crack
shows a damage zone that develops into a bridge when (c) the crack advances. The particles (d)
immediately adjacent to a crack face (the black region partly seen at the bottom of the image)
rearrange when (e) the crack advances. Here the dashed boxes highlight two particular areas where
a large particle submerges, and where many particles rearrange. Reproduced from [8].

made quantitative measurements of the fracture toughness Kc for colloidal films. We found

that paint cracks obeyed the scaling of Eq. (33). However, the values of the energy released

(Gc ' K

2
c ) was about an order of magnitude higher than expected from simple elastic theory,

where the majority of the energy for fracture comes from creating new air-water interfaces

in the broken film. We then performed simple microscope observations on drying films. A

brittle, elastic crack is a reversible deformation, just like any other elastic response. If the

driving forces behind it are removed, it should close. As was explained in Fig. 9 the stresses

which cause fracture are the result of evaporation and Darcy flow. By blocking evaporation

these stresses should disappear, and the cracks close. We performed experiments where

evaporation was blocked either by a flood of water over the film, or by covering it with a

glass slide. These tests showed that 20-30% of the crack opening was, indeed, reversible,

but that the rest of the deformation around a crack was not. Interpreted in terms of strain

energy release, this result quantitatively matched the findings of the crack tip shapes, and

again suggested that only a tenth of the energy consumed in cracking went to brittle failure

mechanisms. To find out where the rest of the energy was spent, atomic force microscopy

was performed on drying films, in situ. As shown in Fig. 12 there is copious evidence

for classic plastic deformation mechanisms, including the formation of dislocations, bridges,

micro-cracks, as well as rearrangement of particles, around cracks drying paint films.

Finally, after identifying the mechanisms for and extent of plastic deformation, we briefly

explored the implications of this finding. A simple balance of forces showed that if the

yielding behaviour of the film was the result of adhesion between neighbouring particles,

then plastic yielding should be ubiquitous. It also showed that plasticity should not be

treated as a negative thing – and that the toughness of films should be significantly increased
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by weakening the bonds between particles, to induce plastic deformation at a lower yield

stress, and thereby spread any irreversible energy losses over a wider area.

VII. STRUCTURE FORMATION IN DYNAMIC DISPERSIONS

In the final section of this introduction I will explore the transport, dynamics, and struc-

ture formation during the solidification of a colloidal dispersion. This type of material is

the basis of many industrial products, from traditional paints, ceramics, foodstu↵s (cheeses,

chocolate), as well as modern coatings, photonic materials, and composite materials. Most

of the above materials begin as a liquid dispersion, which has solidified into its usable final

state. During this process, significant internal stresses can develop, as already described in

Section VI.B. These pressures can cause structural changes in the arrangement of the par-

ticles, as well as act as the driving force for macroscopic instabilities like fracture, buckling,

or shearing, some of which have already been discussed.

Colloids also occupy an intermediate status between atomic solids, and granular materials.

Their constituent particles are Brownian, and are well-described by classical thermodynamic

models. However, from a quantum perspective they are macroscopic objects. They are

therefore sometimes referred to as behaving like ‘classical atoms’. As a model system, I am

working with charged colloidal spheres. These particles interact via a soft Yukawa-potential,

and represent one of the simplest possible steps beyond a classic hard-sphere interaction. I

have shown that, generically, these materials undergo a series of transitions as they solidify

(typically by drying), passing from a liquid-like state, to a repulsive colloidal glass or crystal,

to an attractive colloidal solid [9, 10]. The flow of fluid during drying breaks the symmetry

of the intermediate, repulsive state, and leads to a structural anisotropy of dried colloidal

materials, and will result in macroscopic e↵ects such as birefringence [11].

Much of the work presented here makes use of small-angle x-ray (SAXS) or neutron

(SANS) scattering techniques. These methods use the scattering of focussed beams of radi-

ation o↵ interfaces in a multi-phase material, to probe that material’s inner structure. This

has allowed the investigation of the transitory states that occur during drying [10, 11], and

the connection of these changes with macroscopic responses in dry colloidal films [11]. My

expertise in these methods has also allowed me to collaborate in studying the structure of

active emulsions, in an attempt to understand their propulsion mechanisms [12].

Finally, I am working on how porous granular systems, like real soils, dry. My interest

in this was started by a short research project, which I pursued to follow up my doctoral

studies into columnar joints, and include here. Corn starch, when dried, makes columns that

look like the crack patterns in lavas. Most other granular materials don’t crack in this way,

and I questioned why this particular powder had such an unusual response. The results of

[13] present a possible answer, which lies in the unusual distribution of pore spaces in wet

starch, with water filling voids between particles, and smaller pores within starch grains.
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A. Order and disorder in drying films

As a liquid dispersion dries its volatile components evaporate, and the solids slowly

become more and more concentrated. For equilibrium situations these changes are simply

driven by the change in free volume of the mixture, and the solvent becomes an essentially

neutral background. In particular, at high enough volume fractions colloidal dispersions can

organise and sti↵en into colloidal crystals or glasses. A crystal structure allows for additional

types of elastic response, as compared to a liquid. Since a drying material like paint or clay

will pass through a range of volume fractions, it may have the opportunity to crystallise, or

form into a weak repulsive solid, as it dries. However, as outlined above, in Section IV, flow

of either phase can lead to additional stresses, and induce new behaviour.

The prototype for colloidal crystallisation is the equilibrium phase diagram of hard

spheres, which includes a first-order phase transition from a liquid or gas-like state to a

crystal. At low volume fractions a hard-sphere colloidal dispersion behaves like a fluid,

with no long-range order. A solid, crystalline, phase begins to appear at a volume fraction

of � = 0.494, initially in coexistence with the fluid phase. This solid-liquid co-existence

continues until the dispersion reaches a volume fraction of � = 0.545, at which point the

entire dispersion will have crystallised [44, 118–120]. This transition is entropically driven,

as a close-packed colloidal crystal allows more room for each particle to move, and hence

explore more configurations, than a random arrangement would [119, 121]. At high volume

fractions the nucleation of crystals can be very slow, and the particle structure may instead

resemble that of a quenched liquid, a state known as a colloidal glass [119]. In either case the

particles are e↵ectively caged by their neighbours, but can still di↵use around freely within

their cages. However, the deformation of the cage structure can be anisotropic, unlike a

pure liquid, and on a macroscopic scale can be described by a tensorial strain. Since the

dispersion can now transmit shear stress, and has a relatively long-term structure, it has

the properties of a weak, soft solid.

Charge-stabilised colloidal particles share long-range repulsive interactions and short-

range attractive interactions. The standard description of these materials is Derjaguin-

Landau-Verwey-Overbeek (DLVO) theory, which combines the van der Waals potential with

a screened electrostatic interaction. Briefly, as a discussion of the full details of this theory

can fill chapters of textbooks [14, 44], the DLVO potential between two nearby spherical

colloids of radius a, and separated by a distance `, can often be approximated by

UD = �Aa

12`
+ U0e

�`
. (34)

Here A is the Hamaker constant, an energy scale related to the surface tension (or surface

energy) of materials, and typically of order 10�20 J (i.e. a few times the thermal energy

kBT ), U0 is an electrostatic energy scale related to the surface potential of the particles, and



�1 is the Debye length. This length scale can be tuned by the addition of salt, through
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a range of about a nanometer, to a few tens of nanometers. For like particles the van der

Waals interaction is always positive, while the electrostatic interaction is always repulsive.

In [9–11] I have begun to chart the route for solidification in a charge-stabilised colloidal

dispersion. Fig. 9 has already demonstrated that when a paint or coating dries, the most

common manner for this to happen is by directional solidification. This produces a gradient

in pressures, and particle concentrations, from which arise di↵erences in the structure of the

drying material that sweep across the drying film as a series of fronts. This geometry means

that the di↵erent behaviours of the material can be sampled by either imaging across the

drying fronts at one moment, or by watching one point over time, as these fronts pass by.

The work in [9] shows that solidification should generally proceed by a two-stage process,

mirroring the two di↵erent interactions of DLVO theory. As a charge-stabilised dispersion

dries it will first order into a colloidal crystal or glass, which is dominated by repulsive

electrostatic interactions, and then into an aggregated material, dominated by intimate van

der Waals forces. Until aggregation, this process is reversible. The e↵ect of directional

drying is to spread out these two steps over a transition region of finite width, in which

any set of particles stays for a finite time. For some materials these transitions in internal

structure can be seen by the eye through the e↵ects of structural colour, as shown in Fig.

13(a,b). This colour is the result of Bragg di↵raction conditions being met for visible light,

implies that there a regular structure on a scale of a few hundred nanometers, and can be

interpreted in terms of the DLVO potentials (Fig. 13(c)).

A simple theory for this two-stage solidification should balance gradients in fluid pressure

with the compression of the weak solid. The former is caused by the flow of water across the

drying porous film to balance evaporation over its surface, much like a candle wick draws in

wax to balance that lost to the flame. The latter e↵ect can be related to the compressibility

of the colloidal crystal, which in turn can be derived from its equation of state, or ultimately

pair-wise interactions like that in Eq. (34). In [9] these interactions were varied by changing

the size of the particles, and the concentration of background salt in the dispersion (and

through this, the length-scale of the electrostatic interaction). We then showed how optical

measurements of how things dry can be used to determine the electrostatic potential of the

particles, and hence evaluate properties like their long-term stability. In other words, this

work shows how colloidal stability can be evaluated with a simple microscope, rather than

an expensive and dedicated instrument.

In [10], small-angle x-ray scattering (SAXS) methods were brought to bear on the topic

of how paint dries. The geometry of dip-coating was chosen, both for its ease, and for its

widespread industrial uses. This experiment consists of dipping a flat sheet of a wetting

substrate into a liquid, and then pulling it out at a fixed speed. A thin film of liquid is left

behind on the sheet, with a constant thickness that depends on the withdraw speed, and

the viscosity of the liquid (see [123] for a review of this process). Similar to what is shown

in Figs. 9 and 13, this film then naturally dries into a coating by directional drying. We

positioned a dip-coating apparatus, filled with the colloidal silica which is used to provide
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FIG. 13: Drying of a charge-stabilised colloidal dispersion. (a) Directional drying proceeds as
discussed in Fig. 9, with a series of co-moving drying fronts. (b) Magnifying the liquid-solid
transition region, and choosing appropriately sized particles (here 200 nm colloidal polystyrene
spheres) highlights structural changes by the appearance and evolution of structural colour. The
change from an opaque, milky liquid, to a green and tacky weak solid represents the nanoscopic
ordering of the particles. The gradient from lime-green to dark-green shows how the particles are
pushed closer towards each other, as they dry, as the inter-particle spacing changes. The jump
from green to blue shows the process of aggregation, where particles jump from a repulsive state,
into close contact. (c) These changes can be interpreted according to the DLVO potential of Eq.
(34). For a dilute dispersion (1) there are weak interactions, and liquid-like behaviour; (2) when
UD ⇠ kBT , the material will tend to order [44, 118, 122]. When (3) the compressive capillary
forces overcome the electrostatic barrier, the particles will jump into contact, and aggregate.

gloss to paper, in the path of an x-ray beam, and observed the scattering pattern that formed

o↵ the drying dispersion.

Scattering allows precise measures of the structural information that was seen visually

in [9]. While some aspects of this paper involve establishing methods for applying SAXS

methods to drying colloidal dispersions – which are then exploited in [11], and elsewhere

for grazing-incidence SAXS [124], or vertical SAXS [125], as well as my continuing work –

it also allowed us to look carefully at the transport during drying. We showed how order

arose in the sample as it dried, due to long-range repulsive interactions, and then how this

order collapsed when the particles approached close enough that their polydispersity became

important. This loss of order occurred during the final aggregation of the film into its final

rigid form. We also tracked the motion of water and particles through the system. This

showed, for example, that there was no far-field flow towards the drying front, unlike the

situation for the so-called co↵ee-ring e↵ect [126]. Despite the widespread uses for drying

dispersions, simple basic questions such as how to predict the conditions when a flat, dry

film will form, or where a flow will flow to bring the drying fluid to the edge [126] or centre

[127] of a drying layer. Our contributions explore the physics of how to make a flat film.

Finally, in [11] we looked at how the ephemeral existence of the liquid-solid transition

states can influence the final properties of a dried dispersion. Colloids were dried direc-

tionally in Hele-Shaw cells from which evaporation was only permitted from one open end,
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FIG. 14: (a) The directional solidification of a colloidal dispersion in a Hele-Shaw cell shows
the same transition region between liquid and solid regions, as for a free-standing film. Neutron
scatting patterns (b-d) across the transition region reflect the evolving arrangement of the colloidal
particles, and can be used to determine the structural arrangement of the particles. (e) Once a
colloidal crystal or glass forms, the flow of water through it will lead to drag forces, which compress
the structure along one direction. This anisotropy is frozen in place as the dispersion aggregates
and solidifies. (f) As a consequence, a dried film will appear birefringent when viewed between
crossed polarisers. The pattern of birefringence follows the direction of solidification. Curves here
show the position of the solidification front every 100 minutes; drying occurred from the lower edge
and sides of the cell, through the gaps in the (black) spacers. Adapted from [11].

as shown in Fig. 14(a). As the material dries and solidifies the flow of water through

the film breaks orientational symmetry; the dispersion is compressed, by drag forces, along

the direction of water flow. Neutron scattering spectra taken across the transition from a

liquid to solid (Fig. 14(b-e)) show how these drag forces lead to a structural anisotropy

of the material, as sketched in Fig. 14(f). Essentially, we found that the caged colloidal

particles behave as a solid until some critical yield strain, at which point they can begin

to rearrange to relieve stress and strain. Curiously, the same magnitude of yield strain was

measured for all the types of dispersions that were observed, despite changing the particle

size, drying rate, and particle interactions via background salt. Even more interestingly, the

yield strains exactly match those of sheared emulsions [128], suggesting that some generic

geometric argument could be used to explain the magnitude of the yield strains involved.

When the dispersions finally solidify, the structural anisotropy is frozen into their final

particle arrangements. This means that, on average, the particles are about ten percent

closer to each other in the direction of drying, than normal to it. The e↵ect, and its

magnitude, are expected to be a robust feature of drying. In other words, these findings

suggest that any paint, ceramic, or coating that is dried directionally will have an anisotropy

permanently built into its basic structure, and that this anisotropy can lead to optical

birefringence, mechanical instabilities like shear banding, and act to guide crack paths [11].
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the velocity eld tends to align their axes of symmetry with
respect to each other.63,64 It is interesting to follow the ‘impact’
of two moving droplets with an optical microscope under
crossed polarizers, as shown in Fig. 8. Initially, the droplets
move towards each other, and the point defect associated with
the director eld can be discerned in each droplet at its edge,
pointed towards the other droplet (i.e., at its leading edge of
motion). As the droplets come close to each other, they stop and
turn their director elds slowly around, turning around a
horizontal axis perpendicular to the microuidic channel they
are conned to. Aer this process they withdraw from the
region of impact, and the point defects can be seen again at the
respective leading edges of motion.

In ensembles of many droplets, their hydrodynamic inter-
action gives rise to a wealth of collective phenomena. As Fig. 9
shows, they tend to arrange into crystalline ras (le panel),
which may take off against buoyancy into the third dimension
(right panel). This appears to be due to the convective currents
induced by the superposition of individual ow elds of the
squirmers, but this needs further conrmation. What we want
to stress here is that the quasi-planar arrangement of the ra
tends to remain intact even aer losing contact with the
container bottom.

It is interesting to note that the state of the LC constituting
the droplet considerably affects this behavior. If the sample is
heated above the nematic–isotropic phase transition tempera-
ture, the tendency to form crystalline ras is strongly reduced
and the ras start to disintegrate.

4.2 Mechanism of locomotion

Let us now elaborate possible mechanisms which may be at the
basis of this locomotion. Since there is now only one type of

surfactant involved, the only possible source of Marangoni
stresses is a lateral variation of surface coverage with surfactant
molecules. If the surrounding suspension contains the surfac-
tant at concentrations exceeding the CMC, as is the case in our
experiments, such variations are expected to be rather small. In
order to gain some insight into the magnitude of effects we
should expect, we start with a consideration of the surfactant
concentration proles normal to the droplet surface.

Fig. 7 Squirming LC droplet in a surfactant (TTAB) solution. (a)
Neutron scattering data show a pronounced peak corresponding to
the structure factor of micelles. The addition of LC leads to swelling
and a slight deformation of micelles, but no qualitative phase change.
Black, blue, green, and red curves correspond to 0, 1, 2, and 3 weight
percent of 5CB, respectively. (b) Locomotion velocity sets in at a TTAB
concentration of several weight percent, well above the CMC. It levels
off at high TTAB concentrations. (c) Velocity field around an LC
squirmer (in laboratory frame) as revealed by PIV. The yellow lines are
stream lines of the flow.

Fig. 8 Optical micrograph of a pair of LC (5CB) squirmer droplets
approaching each other in a microfluidic channel (indicated by the
white dashed lines), taken under crossed polarizers. The numbers at
the bottom indicate the elapsed time in seconds. The director field
aligns with the velocity field, such that the latter can be directly
observed. In the vicinity of the ‘impact’ at t ¼ 4.7 s, the velocity field
gradually turns around in both droplets. Before the impact, the point
defects which can be discerned at the droplet perimeters are facing
each other. After the impact, they point into opposing directions.

Fig. 9 Snapshots of collective motion of squirming LC droplets. In the
right panel, part of the raft has moved out of focus, which shows that it
propagates in three dimensions as an integral structure. Such dynamic
crystalline rafts seem to be more stable when the droplets are in the
nematic state. According to our observations, the back-action of the
nematic director field onto the flow pattern is sufficient to affect
the hydrodynamic interaction, and thereby the collective behavior.
The droplet size is approximately 50 microns.

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 7008–7022 | 7015
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Subsequently, we will discuss how these proles may be affected
by advection, and how a self-sustained lateral gradient in
surfactant density (and hence surface tension) may arise.

The uid outside the LC drop consists of water, surfactant,
and possibly some dissolved LC molecules. If there are empty
surfactant micelles (i.e., containing no LC), whose number
density shall be called ne, the number density of the free
surfactant molecules, rs, is equal to the CMC in equilibrium. If
for some reason rs falls below the CMC in some region, micelles
will disassociate until rs is replenished to the CMC again. There
may be also micelles lled with LC (swollen micelles), the
number density of which we call nf. Because of the presence of
the internal interface between the surfactant and the LC inside
these micelles, there is no such direct exchange equilibrium
with the free surfactant phase: in order to have surfactant
molecules be dissolved from the lled micelles, rs would have to
drop quite substantially below the CMC.

This is in line with the fact that already well below the CMC
there is an almost complete monolayer of surfactant molecules
at the interface between the LC drop and the aqueous phase.
This was shown experimentally65 for a quite similar system,
namely the interface between 8CB (4-octyl-40-cyanobiphenyl)
and water with CTAB (hexadecyltrimethylammonium bromide)
as surfactant. The CMC of CTAB in water is about 1 mM, but
already at CTAB concentrations around 0.001 mM, the
anchoring of the LC at the LC/water interface is strongly
affected, which suggests that a large fraction of the interface is
already covered with CTABmolecules. Above about 0.05 mM, no
change in anchoring strength is anymore observed. These
ndings underpin the strong affinity of the surfactant to the
LC/water interface, and suggest that the surfactant density
which would be in equilibrium with LC-lled micelles is far
below the CMC, due to the internal LC interface present in the
lled micelles. It is to be expected that this is qualitatively the
case as well in all similar systems.

In what follows, we will consider the densities of surfactant
molecules either free in solution (rs), bound in empty micelles
(re), or bound in LC-lled micelles (rf). These can be expressed
using the average number of surfactant molecules in an empty
micelle, Ne, and the average number of surfactant molecules in
an LC-lled (swollen) micelle, Nf. The number densities of
surfactant molecules bound in micelles are then re ¼ Nene and
rf ¼ Nfnf, respectively.

There are mainly two mechanisms to be considered for
solubilization into a micellar phase,66–70 which are sketched in
Fig. 10. Either the micelles are lled directly at the droplet
interface, via a local process in which the micelle and the
interface interact. This is called the micellar pathway. Or the
solute is present in some small concentration in the bulk
aqueous phase, and enters the micelles from there. This is
called the molecular pathway.

4.2.1 Micellar pathway. Let us assume for a moment that
the solubility of the LC in the aqueous phase is negligible.
Hence the solubilization must take place directly at the inter-
face, and the molecular pathway is excluded. Empty micelles
impinging on the interface are spontaneously lled with a few
LCmolecules. Their (average) number per lled micelle shall be

called q below. Assuming that micelles may become lled, but
are neither destroyed nor generated at the interface, we have

Devzne(z)|z¼0 ¼ "Dfvznf(z)|z¼0 (16)

or, in terms of the surfactant molecule number densities,

De

Ne

vzrejz¼0 ¼ "
Df

Nf

vzrf
!!
z¼0: (17)

De and Df denote the diffusivities of the empty and lled
micelles, respectively.

It is important to appreciate that since Nf > Ne, there will be
additional surfactant molecules needed to ll a micelle. Since
these need to come from the immediate vicinity of the interface,
the surfactant layer at this interface will be depleted. As a
consequence, the equilibrium between this surfactant layer and
the surrounding free surfactant molecules is disturbed. Hence
there will be surfactant molecules from the surrounding liquid
adsorbing at the interface in order to replenish the surfactant
layer. This leads to a dynamic equilibrium between the surfac-
tant owing diffusively towards the interface and excess
surfactant bound in lled micelles which diffuse away from the
interface. The current of free surfactant molecules towards the
interface must be accompanied by a density gradient, such that
the density of free surfactant will be less than the CMC close to
the interface. This is sketched in Fig. 11a. Consequently, empty
micelles, which are at equilibrium only with surfactant at the
CMC, will disassociate in this domain, trying to replenish the
free surfactant phase.

We will now discuss to what density proles these processes
give rise, considering stationary quantities throughout. If the
current of free surfactant molecules towards the interface is js, it
must be accompanied by a gradient in the density according to

js(z ¼ 0) ¼ "Dsvzrs(z)|z¼0, (18)

where Ds is the diffusivity of free surfactant molecules. Far away
from the interface, rs is equal to the CMC, and its gradient
vanishes. Hence there must be a zone of surfactant sources
close to the interface to compensate for the non-zero second
derivative of the density. These sources are just the empty

Fig. 10 Closeup view of the droplet surface, showing the micellar and
molecular pathways of solubilizing the liquid crystal (LC) in themicellar
suspension surrounding the droplet. In the micellar pathway, micelles
are filled with LC when they impinge on the LC/water interface. In the
molecular pathway, freely diffusing LC molecules are trapped in the
suspended micelles.
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(a) (ii)
Subsequently, we will discuss how these proles may be affected
by advection, and how a self-sustained lateral gradient in
surfactant density (and hence surface tension) may arise.

The uid outside the LC drop consists of water, surfactant,
and possibly some dissolved LC molecules. If there are empty
surfactant micelles (i.e., containing no LC), whose number
density shall be called ne, the number density of the free
surfactant molecules, rs, is equal to the CMC in equilibrium. If
for some reason rs falls below the CMC in some region, micelles
will disassociate until rs is replenished to the CMC again. There
may be also micelles lled with LC (swollen micelles), the
number density of which we call nf. Because of the presence of
the internal interface between the surfactant and the LC inside
these micelles, there is no such direct exchange equilibrium
with the free surfactant phase: in order to have surfactant
molecules be dissolved from the lled micelles, rs would have to
drop quite substantially below the CMC.

This is in line with the fact that already well below the CMC
there is an almost complete monolayer of surfactant molecules
at the interface between the LC drop and the aqueous phase.
This was shown experimentally65 for a quite similar system,
namely the interface between 8CB (4-octyl-40-cyanobiphenyl)
and water with CTAB (hexadecyltrimethylammonium bromide)
as surfactant. The CMC of CTAB in water is about 1 mM, but
already at CTAB concentrations around 0.001 mM, the
anchoring of the LC at the LC/water interface is strongly
affected, which suggests that a large fraction of the interface is
already covered with CTABmolecules. Above about 0.05 mM, no
change in anchoring strength is anymore observed. These
ndings underpin the strong affinity of the surfactant to the
LC/water interface, and suggest that the surfactant density
which would be in equilibrium with LC-lled micelles is far
below the CMC, due to the internal LC interface present in the
lled micelles. It is to be expected that this is qualitatively the
case as well in all similar systems.

In what follows, we will consider the densities of surfactant
molecules either free in solution (rs), bound in empty micelles
(re), or bound in LC-lled micelles (rf). These can be expressed
using the average number of surfactant molecules in an empty
micelle, Ne, and the average number of surfactant molecules in
an LC-lled (swollen) micelle, Nf. The number densities of
surfactant molecules bound in micelles are then re ¼ Nene and
rf ¼ Nfnf, respectively.

There are mainly two mechanisms to be considered for
solubilization into a micellar phase,66–70 which are sketched in
Fig. 10. Either the micelles are lled directly at the droplet
interface, via a local process in which the micelle and the
interface interact. This is called the micellar pathway. Or the
solute is present in some small concentration in the bulk
aqueous phase, and enters the micelles from there. This is
called the molecular pathway.

4.2.1 Micellar pathway. Let us assume for a moment that
the solubility of the LC in the aqueous phase is negligible.
Hence the solubilization must take place directly at the inter-
face, and the molecular pathway is excluded. Empty micelles
impinging on the interface are spontaneously lled with a few
LCmolecules. Their (average) number per lled micelle shall be

called q below. Assuming that micelles may become lled, but
are neither destroyed nor generated at the interface, we have

Devzne(z)|z¼0 ¼ "Dfvznf(z)|z¼0 (16)

or, in terms of the surfactant molecule number densities,

De

Ne

vzrejz¼0 ¼ "
Df

Nf

vzrf
!!
z¼0: (17)

De and Df denote the diffusivities of the empty and lled
micelles, respectively.

It is important to appreciate that since Nf > Ne, there will be
additional surfactant molecules needed to ll a micelle. Since
these need to come from the immediate vicinity of the interface,
the surfactant layer at this interface will be depleted. As a
consequence, the equilibrium between this surfactant layer and
the surrounding free surfactant molecules is disturbed. Hence
there will be surfactant molecules from the surrounding liquid
adsorbing at the interface in order to replenish the surfactant
layer. This leads to a dynamic equilibrium between the surfac-
tant owing diffusively towards the interface and excess
surfactant bound in lled micelles which diffuse away from the
interface. The current of free surfactant molecules towards the
interface must be accompanied by a density gradient, such that
the density of free surfactant will be less than the CMC close to
the interface. This is sketched in Fig. 11a. Consequently, empty
micelles, which are at equilibrium only with surfactant at the
CMC, will disassociate in this domain, trying to replenish the
free surfactant phase.

We will now discuss to what density proles these processes
give rise, considering stationary quantities throughout. If the
current of free surfactant molecules towards the interface is js, it
must be accompanied by a gradient in the density according to

js(z ¼ 0) ¼ "Dsvzrs(z)|z¼0, (18)

where Ds is the diffusivity of free surfactant molecules. Far away
from the interface, rs is equal to the CMC, and its gradient
vanishes. Hence there must be a zone of surfactant sources
close to the interface to compensate for the non-zero second
derivative of the density. These sources are just the empty

Fig. 10 Closeup view of the droplet surface, showing the micellar and
molecular pathways of solubilizing the liquid crystal (LC) in themicellar
suspension surrounding the droplet. In the micellar pathway, micelles
are filled with LC when they impinge on the LC/water interface. In the
molecular pathway, freely diffusing LC molecules are trapped in the
suspended micelles.
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(b)

(i)

FIG. 15: Swimming droplets. (a) The scattering intensity of the equilibrium distribution of a
25 weight-% solution of TTAB with 0% (black), 1% (blue), 2% (green) and 3% (red) imply that
surfactant micelles swell slightly as they absorb liquid crystal, but do not otherwise change their
basic shape, or structural phase. (b) This suggests that a liquid crystal droplet swimming through
a surfactant solution can interact with it by either (i) collision with empty micelles, which then
fill and float away, or (ii) by the formation of a depletion zone around the drop, across which
surfactant and liquid-crystal are di↵usively transported. Adapted from [12].

B. Structure of active emulsions

The topic of active matter has become popular recently, both for mimicking the complex

behaviour of life, and for exploring it artificially. In particular, in my institute there has been

considerable attention to the topic of active emulsions, or so-called artificial swimmers (see

e.g. [129, 130]), which can be used to explore swarming behaviour, for example. The system

under study consists of a liquid crystal droplet floating in a surfactant solution. Marangoni

forces on the droplet’s surface can lead to an instability, and the locomotion of the droplet.

This requires an imbalance of surfactant concentration on the moving droplet, and a means

of sustaining this imbalance. In [12], some possible mechanisms for this are discussed.

Here, my contributions were to apply small-angle neutron-scattering methods to equi-

librium mixtures of liquid crystal and surfactant in water, the results of which are shown

in Fig. 15(a). The surfactant (TTAB) is present at 25% by weight, well above the critical

micelle concentration. The liquid crystal is an oil phase, and virtually immiscible in water.

Together, they form a micro-emulsion of oil-swollen micellar droplets, where the micelles are

about 20 nm in diameter. The addition of liquid crystal stretches the micelles along one

axis, by about 10% per weight-percent of liquid crystal added. This subtle change in shape

proves instrumental in first determining, and then exploring, the reaction pathways along

which surfactant may be lost by the droplet surface. Two such mechanisms are sketched

in Fig. 15(b). These involve either (i) a population of empty micelles that collide with a

swimming droplet, fill, and then transfer away a load of both liquid crystal and surfactant,

or (ii) a depletion of the concentration of free surfactant (and sparingly soluble liquid crys-

tal) molecules near the dissolving droplet, due to capture by micelles. Both can a↵ect the

surface concentration of surfactant molecules along the moving droplet. It was shown that

while pathway (i) can only exert a stabilising influence, pathway (ii) can lead to continuous

swimming behaviour [12].
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C. Pore-scale processes and drying

The above two examples show how microscopic processes, either due to colloidal or mi-

cellar interactions, can lead to macroscopic e↵ects. The final paper included here [13] shows

how pore-scale processes are also fundamentally important to desiccation fracture patterns.

It looks at how starch dries. Although many scientists have used drying starch slurries to

study the formation of columnar joints [27, 67, 131, 132], there was a puzzle why the drying

of this particular powder should so faithfully recreate the columnar fracture pattern, when

other slurries did not. Unlike most other granular materials, or soils, there is a sharply

defined drying front, similar to those discussed above in the context of colloidal dispersions,

that appears when starch is dried. It is wet, un-cracked, and homogeneous to one side of

this front, and broken and dry on the other side (see e.g. [5], Fig. 9). This sharp drying

front appears to be necessary for the formation of columnar joints [28, 132].

The work in [13] starts by looking at individual starch grains, and characterising their size,

and surface characteristics. It notes that each grain of starch is, itself, porous. A material

made of starch grains therefore has two separate types of pore spaces: larger pores between

grains, and smaller pores within grains. By combining measurements of the rheology, density,

permeability and pore pressures, at di↵erent water concentrations, a clear experimental

picture of how water moves through the drying starch was gathered. A detailed modelling

of capillary and vapour transport in drying starch was then able to show that the presence of

the two separate reservoirs of pore space allowed the pore fluid to become disconnected when

there was still an unusually large amount of water left in the starch. This led to a bottleneck

in the transport of moisture out of drying starch, between conditions where liquid transport

was e�cient, and conditions where vapour transport was e�cient. The sharp drying front

straddles this bottleneck in moisture transport. The unusual cracking behaviour of a starch

slurry was therefore traced to the unusually porous nature of the starch grains.

While answering its specific question – why drying starch makes columns – this work also

highlighted other behaviours, which may be of wider interest. One, in particular, is the non-

linear elasticity of a starch block. When compressed, the starch is initially very compliant,

and behaves as a material with a vanishingly small elastic modulus. As the strain reaches

a few percent, the e↵ective Young’s modulus increases linearly with strain. This highly

non-linear elasticity, where � ⇠ ✏

2, can have a strong e↵ect on the fracture conditions of

granular pastes and slurries [113, 133, 134]. One projects that has begun in my group, which

indirectly follows up this earlier result, is the development of an experimental model porous

media consisting of glass beads held together by cured PDMS capillary bridges. These soft

materials are expected to show a broad range of tuneable non-linear elastic responses.
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