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Calibration of the peak positions  
In order to calibrate the relation between the position of the peak in the structure factor qpeak 
and the silica volume fraction  φs, we used a series of dispersions obtained through dialysis 
with aqueous solutions of PEG 35000 (see Materials and Methods). We measured qpeak and φs 
in each one. This calibration does not depend on any assumptions regarding the sizes or the 
ordering of the silica particles, provided that the short-range order is determined by φs only. 
We then found that (qpeak)3 is proportional to φs, in the range (0.03 – 0.5), as it should for 
repelling particles (Figure SI-1) [1]. Moreover, this relation of proportionality can be 
modelled by treating the system as a face-centered cubic array of particles with a number-
averaged radius Rp = 8.15 nm [1] 
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Figure SI-1. The relation between the position of the first peak of the structure factor and the volume fraction of 
silica particles in the dispersion. Two series of concentrated dispersions were prepared separately, and both gave 
the same calibration curve, with a coefficient of proportionality of 0.142 ± 0.03 nm-3, as shown. 

Determination of the integral of the scattered intensity 
At high q values, the integral of the intensity scattered in all directions of reciprocal space 
goes to a limit (Qh) that depends only on the average fluctuation of the density of scattering 
length in the volume that is irradiated by the beam. For materials that have only 2 levels of the 
density of scattering length, this average fluctuation is expressed simply as a function of this 
difference in scattering density, and of the volume fraction of these two phases  
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The SAXS experiment does not reach infinite q values; therefore, we have measured the 
values of Qh at finite qmax values. Fig. SI-2 shows how Qh varies with qmax for a selection of 
spectra recorded during the drying of a film. We see that, due to the low signal / noise ratio at 
high q, the value of Qh fluctuates considerably for values of qmax that are beyond 3 nm-1. Such 
q values correspond to distances below 3 nm, which are intra- rather than inter-particle 
distances. We take advantage of this fact to overcome the signal/noise problem. 

 
Figure SI-2. The integral of the scattered intensity of the film as a function of the highest value of q used for the 
integration. The line that extends beyond q = 4.5 nm-1 is the corresponding integral for a dilute dispersion, using 
a scale factor that matches both sets of data at q = 3 nm-1. 

In order to obtain more accurate values of Qh, we used a spectrum recorded independently for 
a thick (h = 1 mm) sample of a dilute (φs = 4 × 10-3) dispersion of the same colloidal silica. 
For this spectrum, we had a better signal over noise ratio that allowed us to calculate an 
accurate value of Qh, taking qmax = 5 nm-1 (Fig. SI-3). We note that the asymptotic limit of the 
scattering from the dilute dispersion is approximately 10% higher than that of polydisperse 
spheres with the same average radius (Fig. SI-3). This is because the individual silica particles 
have non-spherical surfaces, as shown by transmission electron microscopy [2]. 

Since the particles in the dilute dispersions and those in the films were the same, and since 
they are incompressible, we spliced the data from a dilute dispersion and from the films to 
obtain SAXS curves that matched the film data at all q values corresponding to inter-particle 
distances (q < 3 nm-1) but had better signal ratio for distances that were well within a particle 
(q> 3 nm-1). These spliced curves were then used to calculate the value of Qh.  
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Figure SI-3. The integral of the scattered intensity as a function of the highest value of q used in the integration, 
for dilute dispersions of Ludox HS-40 colloidal silica, compared with the theoretical limit for polydisperse 
spheres with a Schulz distribution of radii, as defined in the main text, Fig. 4. All intensities have been 
normalized to that given by a dispersion of concentration φs = 1 × 10-2. 

Determination of the Porod limit of the scattered intensity 
At high q values, materials that have only two levels of the density of scattering length follow 
Porod’s law, which is a q-4 decay of the intensity. The prefactor of this power law, also called 
the Porod limit, is determined by the total area of interface between the two phases of the 
material, as expressed in Eqn. /SI-3/ (corresponding to Eqn. /6/ of the main text). 
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In order to determine this limit, we used the classical plot of I(q) vs. q-4: the prefactor of the 
power law is the initial slope of this plot, and the ordinate at the origin is a background 
correction. 
Fig. SI-4 shows an example of this type of plot for a thick sample (h = 1 mm) of a dilute 
dispersion of the same colloidal silica (φs = 4 × 10-3). These plots are compared with the 
theoretical plot for a Schulz distribution of spheres with a mean radius Rp = 8.0 nm and width 
σR/Rp=0.14. As seen in Fig. SI-2, the Porod limit of the Ludox HS-40 particles is higher than 
that of the corresponding spheres, because the particles are somewhat aspherical.  
Using the plot shown in Fig. SI-4, which yields a Porod limit q4I(q) = 1.68 × 1034 m-4, 
together with Qh for the same dispersion, Qh = 8.91 × 1025 m, a difference in density of 
scattering length Δρ2 = 5.69 × 1029 m-2,  and a volume fraction φs = 4 × 10-3, we obtained a 
surface area per unit volume Ap/Vp = 5.90 × 108 m-1 through Eqn. SI-4: 
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This surface area per unit volume corresponds to an area per unit mass Ap/Mp = 2.68 × 105 
m2kg-1, slightly higher than that provided by the manufacturer from BET measurements 
(Ap/Mp = 2.20 × 105 m2kg-1). 

 
Figure SI-4. The Porod limit of dilute dispersions of Ludox HS-40 colloidal silica, compared with the 
theoretical limit for a Schulz distribution of spheres with the same average radius. All intensities have been 
normalized to that given by a dispersion of concentration φs = 1 × 10-2. 

Fig. SI-5 shows the Porod plots for a selection of spectra recorded during the film drying 
experiment. Because these spectra have a low signal-to-noise ratio at high q, the accuracy on 
the initial slope on the Porod plots is poor. Consequently, we have determined this slope using 
an extended range of q (from q = 1.2 to 3.2 nm-1).  This results in systematically 
underestimated slopes. As in the case of the invariant, we can use the comparison with the 
scattering from bulk samples to evaluate the required correction.  

 
Figure SI-5. The Porod limit of dilute films of Ludox HS-40 colloidal silica, compared with that for dilute 
dispersions of the same colloidal silica.  
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Indeed, the distances probed by the experiment in this range of q values extend from d = 2π/q 
= 2 to 5 nm. These distances are essentially intraparticle rather than interparticle distances. 
Accordingly, we assumed that the variations of the Porod limit at very high q values were the 
same for the drying films and for bulk samples of dilute silica dispersions. The slopes of the 
Porod plots given in Fig. SI-6 shows that this is true within experimental uncertainties. 
Accordingly, based on the evolution of the slope of the Porod plot with changes in the q-4 
range used, the Porod limit determined for films in the range extending to q-4 = 0.5 nm4 was 
only 80 % of the true asymptotic Porod limit (asymptotic value 2.9 × 10-3 nm-4 rather than 
2.35 × 10-3 as seen in Fig. 8 of the main text). 
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Figure SI-6. Evolution of the initial slope of the Porod plot depending on the q range considered for the 
determination of the slope. Horizontal scale: highest value of q-4 used in the determination of the slope of the 
Porod plot. Full diamonds are the data obtained for a thick sample of a dilute dispersion of ludox HS-40 colloidal 
silica, scaled to match the average level of the film data. Empty circles are an average over time of the data 
obtained for the spectra recorded during the drying film experiment.  

Agreement between the absolute values of the volume fraction, 
Porod limit and the integral of the scattered intensity 
One can obtain values of hφs from the fit of the evolution of Qh by Eqn. /11/ in the main text  
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as well as the from the value of the Porod limit 
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By combining Eqns. SI-5 and SI-6 we obtain 
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In order to check the consistency of our measurements, we need an estimate of the ratio Ap/Vp. 
Such a ratio has been obtained from Eqn. SI-4. We obtained Ap/Vp = 5.90 × 108 m-1. Using 
this value for Ap/Vp and K = 1.61 × 10-2 nm-3 one finds a Porod limit of 3.0 × 10-3 nm-4. This is 
in agreement with the trends shown in Fig. SI-6.  

The integral of the scattered intensity for systems with either 2 or 3 
constant levels of scattering density 
Consider a material described by its electronic density,  !(

!r ) . This density has an average 
value,  !"(

!r )# , and its spatial fluctuations around the average value are described by !(
!r ) : 

 !(
!r ) = "(!r )# $"(!r )%          /SI-8/ 

The scattered amplitude is a Fourier transform of  !(
!r ) , and the scattered intensity is 

proportional to the average squared fluctuation  !"
2 (!r )# . The integral over all  

!q  vectors of the 
scattered intensity (also called the invariant) is [3,4]: 

  
Qh = Iexp q( )q2 dq

0

!
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In a system with only 2 levels of electron density, with some volume fraction φw of water with 
an electron density ρw, and volume fraction φs of silica with an electron density ρs, the 
average density !(

!r ) = ρwφw + ρsφs. In regions of water, the squared fluctuation is 

!w
2 = ("w # ("w$w + "s$s ))

2         /SI-10/ 

with a similar expression for !s
2 . The average squared fluctuation is the sum of the squared 

fluctuations in both types of regions,  !"wet
2 # ="w

2$w +"s
2$s , which simplifies to the classical 

expression 

  !"wet
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For a three-phase system, if some regions are filled with air of  an electron density ρ0, and 
volume fraction φ0, the new total average electron density is  !"(

!r )# = "0$0 + "w$w + "s$s , 
and thus, for example, 

 !w
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The average squared fluctuation is now the sum of the squared fluctuations in all 3 types of 
regions: 
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which simplifies to 

  
!"dry
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We have measured the integral of the scattered intensity in the wet and in the dry solid. 
Therefore we can determine φw and φ0 through the ratio 
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and the relation φw + φs + φ0 =1.  A resolution of Equation /SI-15/ with (ρw – ρs)2 = 5.69 × 
1029, (ρs – ρ0)2 = 2.88 × 1030, (ρw – ρ0)2 = 8.89 × 1029, φ2 = 0.68 and Qdry/Qwet = 3.2 yields an 
air volume fraction φ0 = 0.16 and a water volume fraction φw = 0.16. This residual water 
content corresponds to 1-2 molecular layers of water on the silica particles, assuming that a 
dense molecular layer of water has a thickness of 0.3 × 10-9 m. This amount of residual water 
is what is expected at ambient relative humidity (RH = 50 %) [5]. 

Final film thickness 
In order to find out whether the drying process produced uniform solid films, we performed a 
SAXS scan of a fully dried dip-coating film along its length (i.e. along the dip-coating 
direction). Figure SI-7 presents the measured values of the invariant of the scattered intensity 
and the values of the silica volume fraction, calculated from the position of the first peak of 
the structure factor. The values of the invariant have been scaled by a constant factor (1/21) in 
order to facilitate the comparison with the silica volume fraction. Both sets of data indicate 
that the film is nearly uniform, with a variation of 5% over the central part of the film 
(positions 5000 to 15000 µm). However, there are significant excesses of deposited silica at 
both ends of the film, particularly at the bottom end where a bulge of liquid dispersion 
remained at the end of the dip-coating. We can also note an increase in silica volume fraction 
at the bulges [6]. 

After the SAXS experiment was completed, we scanned the film again, using a white light 
reflectometer to determine the film thickness. For this determination we used the index of 
refraction of mica (approximated by that of BK7 glass), and that of water. This scan 
confirmed that the film thickness was uniform, excepted for the bulges at both ends of the 
film (Figure SI-7). The average film thickness measured in this way (taking the mean value 
between position 5 mm and 15 mm) was h = 1.6 µm, compared with that determined through 
the SAXS invariant, which was h = 2.1 µm  
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Figure SI-7. Scans through a dry film, along the direction of dip-coating. The horizontal scale goes from 0 (top 
of the deposited film) to 20 mm (bottom of the mica). Green triangles: Volume fraction of silica, calculated from 
the position of the first peak of the structure factor. Pink squares: invariant of the scattered intensity, in nm-3, 
scaled by 1/21. Blue diamonds: thickness of the film, in µm, scaled by 1/2.4. The average film thickness was 2 
µm. 
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